Tag Archive for: Pests

Small Hive Beetles

In the world of beekeeping, there seems to be no end to pests and adversity for both bees and beekeepers alike. Here at Wildflower Meadows, it seems to us that exotic pests and parasites really took hold in American beekeeping sometime during the late 1990s and early 2000s.  First came tracheal mites, then varroa mites, then African Bees.  Subsequently, at some point came colony collapse and along with it a multitude of exotic viruses that practically no one had heard of before – and virtually few still understand today.

In the midst of all this, it can be easy to forget about the small hive beetle, which arrived roughly around the same time. The small hive beetle, also known as the Aethina tumida, was first found in South Carolina in 1996 – though, it’s thought to originate from Southern Africa. A few years later, scientists discovered this new pest in Florida, where the beetles are believed to be responsible for killing thousands of honey bee colonies. Although it’s unclear exactly how the beetle made it to the United States (though public transport may be to blame), we do know that it has wreaked havoc ever since.

Beekeepers often see adult small hive beetles around the lid or bottom boards of colonies.  The adult hive beetles themselves are not much of a problem to beehives – they are really more of a nuisance.  While adult small hive beetles can be easily spotted by beekeepers and controlled by strong beehives, their disgusting larvae are actually much more dangerous and troublesome.

Adult beetles lay their eggs in the small cracks and gaps of a beehive.  When the subsequent larvae emerge, they track through the hive, eating honey, pollen, and pollen substitutes. As they burrow through the comb they defecate in the hive, which destroys and ferments honey.  This fermented honey becomes foamy and takes on the odor of rotten citrus fruit, often leaking from the comb and creating a horrible mess.

Many commercial beekeepers have come to refer to this revolting damage simply as “slime.” This mess can happen inside the hive or in the beekeeper’s stored equipment.  The potential damage of the small hive beetle larvae to the beekeeper is three-fold – loss of comb, loss of honey, and potentially loss of bees.

Not all beehives suffer from the presence of small hive beetles however.  Much of the time, strong colonies can control and corral the adult small hive beetles and limit their population inside the hive, thus limiting their egg-laying and subsequent larvae damage.  It is the weaker and less populous colonies that generally suffer from the small hive beetle.

Since these weaker colonies don’t have the strength of numbers to control the adult beetle population, they suffer the effects of too many larvae.  Conditions inside these hives can sometimes deteriorate past the point of no return, creating too much damage and fermented honey.  This can cause the bees in the hive to abscond, leaving nothing but a slimy mess inside the equipment.

At Wildflower Meadows, we first started noticing the occasional small hive beetle around 2012.  However, small hive beetles have never really gained a foothold in most areas of California, including ours – thankfully.   Around here, small hive beetles sometimes appear for a month or two during the wet season, never causing damage, then disappear for months, or sometimes years at a time.  If the small hive beetle has a vulnerability, it is that the larvae eventually must leave the hive to burrow in the ground and pupate. Here in California our ground is generally dry and hard for a long portion of the year, and the hive beetle larvae can’t flourish under these conditions. Thank goodness for our long, hot, and dry spells – no one here is complaining!

 

Honeybees And Bears

Of all the natural predators of honeybees, such as birds, skunks, raccoons, and badgers, probably none are as fearsome and notorious to bees and beekeepers alike, as bears.  Bears love to eat bee larva, bee brood, and to a lesser extent, honey.  With this appetite for bee products, they seem to be more interested in beehives than even the most dedicated beekeeper!  It is no coincidence that many honey containers are shaped like bears.  Keep in mind that even Winnie the Pooh loves “hunny.”

The problem, for both the bees and their beekeepers, is that when bears visit an apiary, the damage they cause is almost always devastating.  Bears do not carefully harvest honey like we beekeepers do.  No, they pick up entire colonies and strew them about the ground; destroying the equipment and creating havoc in the apiary.  If you have ever visited an apiary after a bear visit, your first impression will be is that it looks like a war zone, with no survivors.  Damaged and destroyed equipment will be strewn everywhere.

You would think that a colony’s guard bees would be able to scare a bear away with their stings, but the bears’ fur coats are so thick that the bees’ stingers can not really penetrate well enough to get to a bear’s skin.  The only vulnerable spot on a bear is its face.  This is perhaps why bees have evolved over the years to focus on stinging the head and face of an intruder.  Most beekeepers know that angry bees typically aim for the head.  This is likely an evolutionary and instinctive response against bear attacks.  It is also why the beekeeping veil is the most important piece of personal protection for a beekeeper.

The best and probably only practical defense against bears is to encircle vulnerable apiaries with electric fencing.  As a beekeeper, this is an expensive solution, however, much less expensive than losing an entire apiary of bees and equipment with every bear attack.  Fortunately, most beekeeping supply companies sell these fences, many of which are solar powered.

If only bears could realize how dependent they are on honeybees, just like the rest of us, they might show a little more compassion to the colonies that they attack.  It is estimated that about 15 percent of a bear’s diet consists of berries, all of which require pollination, much of which is done by honeybees.  Many researchers suspect that bears are already being adversely affected by the decline in wild bee populations.  Fewer pollinators mean fewer berries, which in turn affects the bears’ nutrition and foraging behavior.

Unwelcome Guest

As the beekeeping year winds down and the nights become long and cold, honeybees tend to huddle into winter clusters, hunkering down for the icy cold months ahead.  These winter bees gather into a tight unit, preserving their heat and honey.  They become less active, as their goal is not to expand or make honey, but rather simply to survive.  They are perfectly happy to stay inside their comfortable home, keep warm, and ride out the winter.

Sometimes this warm and comfortable home, however, attracts unwanted guests.  The life of a mouse during winter is not particularly easy either, as a mouse is always on the lookout for both shelter and warmth.  And nothing quite beats the comfort of hanging out inside of a beehive while the bees are hard at work keeping it warm.  Not only is a beehive sheltered and warm, but it also contains free food in the form of pollen and honey.  Believe it or not, usually during winter, a mouse can actually take up residence in a live beehive and live perfectly well alongside the bees!

During most of the season it would be impossible for a mouse to coexist within a live bee colony.  The population of bees is simply too high and too active in the peak of the season for a mouse to survive for too long without being stung.  A summer colony is booming with activity and plenty of guard beesWinter colonies, however, are small and inactive, thus making them perfect targets for opportunistic mice.

Once inside a colony, a mouse can not only chew through valuable food stores, but also cause damage to the honeycomb, and contaminate the combs and woodenware with urine.  From both the bees’ and the beekeepers’ perspective, mice really are unwanted guests.

Lets be honest though, the little guy in the above picture looks perfectly innocent.  You might even think that he deserves a nice home.  But sorry, Mr. Mouse, the bees and the beekeeper tend to disagree.

Yellowjackets And Honeybees

Although non-beekeepers sometimes confuse yellowjackets with honeybees, a beekeeper knows the difference between the two very well.  The honeybee is loved by the beekeeper, and the yellowjacket?  Well, maybe not so much . . .

Yellowjackets are predatory wasps that feed on many of the same nectar sources as honeybees.  However, yellowjackets are carnivorous as well, and feed on other insects – yes, including honeybees!  Yellowjackets also eat other sources of sugar, such as fruits and tree sap.

Unlike honeybees, yellowjackets do not overwinter as a hive.  Only the queen yellowjacket overwinters.  Therefore, a yellowjacket colony starts from nearly zero in the spring, to its full size of nearly 5,000, which appears in late summer.

At Wildflower Meadows, in late summer we begin to see the presence of yellow jackets, especially around our mating nucs, which because of their small size, are most vulnerable to yellowjacket attacks.  Yellowjackets seek out the small mating nucs to both kill and eat bees, as well as to rob honey and sugar syrup.

Powdered Sugar Roll

The VSH trait is one of the best-known ways of naturally controlling varroa mite growth without the use of chemicals or miticides.  But how does a beekeeper know whether a given colony is expressing high VSH levels?  The best way to determine this is to test the colony for varroa mites, and then compare the results of the test against colonies that are susceptible to mites.

At Wildflower Meadows we take pride in our mite-resistant VSH-Italian queen bees.  We perform mite counting tests on our bees throughout the year, and test multiple colonies within individual apiaries.  Although the most reliable way of testing for varroa mites is called the alcohol wash, we don’t always utilize the alcohol wash because it kills upwards of 300 bees per colony, per test!  So, because we are not big fans of intentionally killing our bees, more often than not, we prefer to use the powdered sugar roll to gain insight into varroa mite levels.

To perform the powdered sugar roll, we take approximately 300 bees (from the brood nest, where varroa mites are typically most active) and shake them into a jar that contains a small amount of powdered sugar. The powdered sugar, along with vigorous shaking, dislodges the varroa mites off of the bees.  Before long, the mites become loose and become mixed in with the powdered sugar.  By then pouring the mixture of powdered sugar and bees over a screen and onto a piece of white cardboard (see the photo above), the bees stay on top of the screen, but the sugar and mites fall through to the cardboard.  Against the background of the white cardboard it is easy to see and count any varroa mites from the sample.

Mite counts are usually estimated as varroa mites per 100 bees.  In general, three or less mites per 100 bees is considered an acceptable threshold – although this threshold is not a hard and fast rule, and much depends on the goals and tolerance of an individual beekeeper.

The downside of the powdered sugar roll is that it is rather difficult to know exactly how many bees were in the sample in the first place.  It is only with time and practice that a beekeeper can learn to accurately estimate the number of bees in each sample.

The best part about the powdered sugar roll, besides the information that it imparts, is that none of the bees have to die.  After only a half hour or so of testing, our apiaries become alive with “ghost bees” – worker bees that are perfectly healthy, but are covered from head to foot in sugar.  They look strange, but are happily welcomed by their sisters, who eagerly lick them clean!

In no time at all, everything returns back to normal; the bees clean up the sugar, we gain valuable information, and no bees die in the process.

The below link, courtesy of the University of Minnesota Department of Entomology, contains further detailed instructions on how to perform a powdered sugar roll (link opens as .pdf).

How to Do a Powdered Sugar Roll

Quit Badgering Our Bees!

Badgers and Honeybees

At Wildflower Meadows, we are fortunate that we do not experience many predators of our beehives.  Bears do not roam in our part of California.  Our worst nuisances are usually ants, which harass weak colonies.  Varroa mites are not much of an issue for us either due to the strong VSH trait in our bees.  Occasionally we sometimes find roadrunners hanging around the entrances of our colonies, picking off bees as they come in and out of the entrances, but otherwise they too are harmless.  Compared to other beekeepers, in general, we do not have much to worry about in the way of predators.

This week, however, we were surprised to find one of our queen bee mating yards in disarray.

 

When our crew arrived for routine feeding they immediately saw that several of our mating nucs had been tossed about like they were Frisbees.  Lids and frames were torn off, and the mini mating frames were completely ripped out of the hives.  The bees were gone, either having been eaten or absconded.  It was obviously the work of a strong animal with a taste for bees and honeycomb.

After a little investigative work, it wasn’t hard to come to the conclusion that a hungry badger had attacked our colonies!  The footprints and size of the claw marks on the boxes were a give-away.  We noticed that dirt had been sprayed around the destroyed boxes, offering a clue that a ground animal was involved.  Finally, a phone call to the land manager revealed that badgers had been spotted in the area.

The American Badger is commonly found in the rural areas of Southern California, particularly near water sources.  They are nocturnal and carnivorous with a taste for bees and honey.  Although this sounds completely bad from a beekeeper’s point of view, they do provide benefits to the ecosystem around an apiary.  First, along with the roadrunners, they eat rattlesnakes!  We can’t complain about that.  And, since they are ground animals, badgers also dig up wasp nests, which provides a natural control on another bee predator.

Nevertheless, with this attack we are facing a real problem.  The only natural deterrent we have are the bees themselves.  Our bees are known to be gentle, but in this case they really need to stop being such little angels!  If they can’t sting the badger enough to deter it, and the badger returns for another feast, we are going to have to get involved and help our bees.  Our first step will be to erect fencing around the apiary.  Hopefully, we will not have to electrify it.  But, we beekeepers well know that when it comes to both bears and hungry humans, once something (or someone) gets a taste for fresh honey, it is hard to break the habit!

Ants

Because varroa mites, and to a lesser degree, tracheal mites, are such a steady danger to honeybee health, they garner much of the attention of the beekeeping world.

Beekeepers seems to rarely mention ants, but the presence of ants can sometimes be a huge nuisance – especially here in Southern California.  During the late summer and early fall when ant populations are at their peak and bee populations are beginning to decline, relentless rows and rows of ants march through apiaries on their way towards vulnerable beehives, seeking prized honey and pollen.

Fortunately, for the most part, bees are able to fight off the onslaught.  Guard bees frantically patrol the openings to the hive, chasing ants away one at a time.  Most of the time, the bees are able to hold their own and keep the ants at bay.  One of the best ways that a beekeeper can provide support to a colony that is struggling with ants is to place the colony on a hive stand.  The legs of the stand can then be placed in cups of vegetable oil, providing a natural and effective barrier against ant invasions.

Without protection, sometimes the ants can get the upper hand on a weak colonies.  Unchecked, ants can force even a strong colony to abscond – a sad and tragic sight for any beekeeper.

 

 

California Diamondback

One of the most enjoyable parts of working with bees is having the opportunity to work outside within the beauty of nature.  In the semi-rural areas of Southern California, where our apiaries are located, we regularly run across all sorts of animals.  In the course of a typical day, we are almost always greeted by chirping birds – finches, mockingbirds, jays, woodpeckers – and even wild peacocks and turkeys.  Occasionally we meet up with a coyote or two, and sometimes even catch a glimpse of a roadrunner scurrying through the bee yard.

Not as enjoyable, however, is when we encounter rattlesnakes.  You might think that bees and rattlesnakes would keep their distance from one another, and that a beekeeper would not be at much risk of running into rattlesnakes.  Unfortunately, you would be wrong.  Rattlesnakes love burrowing under beehives.  The bees don’t bother them, nor do they bother the bees.  It is a perfect arrangement for the rattlesnake; the beehives provide shade in the summer and naturally warm temperatures at night.  Being cold-blooded, rattlesnakes are pleased to discover that relaxing below a buzzing beehive provides a temperature-controlled canopy year-round.  Not only that, the beehives offer excellent cover from birds of prey and other nuisances . . . such as humans.

Although not an everyday occurrence, several times a year we find ourselves face to face with a rattlesnake.  While harvesting queen bees for sale, and taking equipment back to the shop, we have to pick-up our queen mating nucs off the ground.  When a colony comes off the ground and we discover a coiled rattler underneath, our hearts skip a beat, or two.  That look, with the flat head, diamonds across the back, and a rattle at the end of its tail is unmistakable.  And, just in case there is any mistaking the look, a small shake of the rattle leaves little doubt of what’s at hand!

So far, no one here at Wildflower Meadows has ever been bitten, as each of our beekeepers have learned and practice what we call the beehive “two-step”:  lift the colony, take two steps back.  More often than not, the rattlesnake will move away on its own, far out of the bee yard and into another crawl place.  Other times, we will very carefully relocate the snake with a stick.  We haven’t had to kill one yet, and really don’t want to.  The rattlesnakes, frightful as they may be, are a natural part of our ecosystem, our apiaries, and a big plus to us beekeepers in helping to keep the rodents away.