Beekeeping Posts

Laurel Sumac

Around mid-June in coastal California – earlier in some years, and later in others – laurel sumac begins to blossom.  A favorite flower source of honeybees, laurel sumac produces large pods of creamy white flowers, which the bees eagerly work for both pollen and nectar.  Unlike most nectar sources, which result in the bees producing fresh white wax, laurel sumac produces a unique yellow-tinted wax.  The honey is also a yellowish light honey, which is especially mild and delicious.

The honey from laurel sumac is a uniquely flavored honey, somewhat comparable to wild sage honey.  In fact, much of California sage honey probably contains laurel sumac honey as well, since the two plants coexist in the coastal chaparral together and often bloom simultaneously.  Honey producers prefer to label the honey from laurel sumac as “sage honey”, however, since sage reads a lot better on a honey label than sumac.  In many people’s minds, sumac is associated with poison ivy, which is the notoriously toxic, and perhaps best-known member of the sumac family.

California Diamondback

One of the most enjoyable parts of working with bees is having the opportunity to work outside within the beauty of nature.  In the semi-rural areas of Southern California, where our apiaries are located, we regularly run across all sorts of animals.  In the course of a typical day, we are almost always greeted by chirping birds – finches, mockingbirds, jays, woodpeckers – and even wild peacocks and turkeys.  Occasionally we meet up with a coyote or two, and sometimes even catch a glimpse of a roadrunner scurrying through the bee yard.

Not as enjoyable, however, is when we encounter rattlesnakes.  You might think that bees and rattlesnakes would keep their distance from one another, and that a beekeeper would not be at much risk of running into rattlesnakes.  Unfortunately, you would be wrong.  Rattlesnakes love burrowing under beehives.  The bees don’t bother them, nor do they bother the bees.  It is a perfect arrangement for the rattlesnake; the beehives provide shade in the summer and naturally warm temperatures at night.  Being cold-blooded, rattlesnakes are pleased to discover that relaxing below a buzzing beehive provides a temperature-controlled canopy year-round.  Not only that, the beehives offer excellent cover from birds of prey and other nuisances, such as humans.

Although not an everyday occurrence, several times a year we find ourselves face to face with a rattlesnake.  While harvesting queen bees, and taking equipment back to the shop, we have to pick-up our queen mating nucs off the ground.  When a colony comes off the ground and we discover a coiled rattler underneath, our hearts skip a beat, or two.  That look, with the flat head, diamonds across the back, and a rattle at the end of its tail is unmistakable.  And, just in case there is any mistaking the look, a small shake of the rattle leaves little doubt of what’s at hand!

So far, no one here at Wildflower Meadows has ever been bitten, as each of our beekeepers have learned and practice what we call the beehive “two-step”:  lift the colony, take two steps back.  More often than not, the rattlesnake will move away on its own, far out of the bee yard and into another crawl place.  Other times, we will very carefully relocate the snake with a stick.  We haven’t had to kill one yet, and really don’t want to.  The rattlesnakes, frightful as they may be, are a natural part of our ecosystem, our apiaries, and a big plus to us beekeepers in helping to keep the rodents away.

Swarm Control

All creatures possess a deep-seated instinct to reproduce and expand, and bees are no exception.  At the height of spring, when nearly every flower is in bloom, when the days are noticeably warmer and longer, beehives can’t help but to grow rapidly.  During the peak of spring, hive activity bustles and pollen and nectar flow into the hive in abundance.  With the wealth of favorable conditions, populations explode.  Before long, bees become increasingly prone to swarm.  They can’t help themselves; as all of the stimuli they are receiving – the lengthening days, the abundance of food, and especially the overcrowding – rouse every instinct within them to swarm.

As much as the bees are motivated to swarm, a beekeeper is equally motivated to keep the bees at home!  When half the population of the hive simply flies away – for good – and with a thirty-dollar queen no less, it is not an especially happy day for the beekeeper.  Losing a hive to swarming means less bees, less honey, and less overall production.  Swarms can also lead to problems with neighbors.  From the beekeeper’s perspective, none of this is welcome.

As a result, a conscientious beekeeper needs to take precautions to prevent swarming.  This is known as “swarm control.”  Swarm control needs to take place well before the bees begin to think about swarming.  Once a hive has begun to fill in every cell of comb with eggs, larvae and food, and is about to swarm, it is far too late for the beekeeper to intervene.  Swarm control, like many aspects of best practices in beekeeping, needs to take place in advance.

Simply the best way to control swarming is to try to prevent it from happening in the first place.  During the peak of spring, the colony needs to have plenty of surplus space and room to expand. Beekeepers need to stay ahead of their bees and provide ample extra space for the colony to grow into.  An extra box of empty comb, along with a few frames of empty foundation to work will keep the bees occupied and less apt to swarm.  Younger queens are also less prone to swarming, so frequent requeening can prevent swarming to some extent.

Once a colony has made up its mind to swarm, however, as evidenced by it developing queen swarm cells, the beekeeper needs to take more serious action.  About the only thing a beekeeper can do at this point is to simulate an artificial swarm, and split the colony into two, or sometimes three, colonies on his own.  This managed splitting of the colony forces the bees to reset into small-sized colonies, which are not overpopulated and less apt to swarm on their own.

The April Honey Flow

In Southern California, we usually receive our strongest flow of incoming honey during the month of April.  Winter rains bring early spring flowers, followed, of course, by nectar for the bees.  During early April, a fine assortment of honey producing flowers blossom – the most impressive of which include avocado, citrus, eucalyptus, and sage.  Before a beekeeper knows it, honey supers have begun to fill, and more space is urgently needed.

For a queen producer, however, a strong honey flow can be a bit of a liability.  The mating nucs that a queen producer uses are not designed with honey production in mind, but rather for efficient queen production.  Their main features are that they are easy to set up, easy to work with, and easy to find queens.  They typically only contain a few small combs and practically no extra space for the bees to store surplus honey.

When the honey flow begins, the foragers within these mating nucs naturally grow as excited as any other foraging bees.  They can’t but help themselves, and spend every available minute collecting more high-quality honey than they have space with which to store it!  The result is a mating nuc with huge sticky combs and lots of gooey honey.

This slows things down somewhat for our queen harvesting crews.  We have to be extra careful when removing combs so that we do not squish the queen inside a mess of honey.  The good news is that these early season queens are most certainly well fed; basically they are honey connoisseurs, feasting on the best varieties of honey that Southern California has to offer!

photo 2

Single Source Honey

The above photo of bees in a lavender field was taken in France, where lavender is grown commercially.  Lavender is also grown in Spain and other parts of the European Union.

The honey from lavender blossoms is arguably one of the most prized single-source varietal honeys in the world.  It is almost exclusively imported from Europe.  This honey is magnificently delicious with a delicate flavor and slight purple hue.  Lavender honey is expensive, but if you are a honey connoisseur, it is highly worth a try.

Single sourced honey originates from a single flower type and, as a result, takes on the unique flavor and characteristics of that blossom.  In order to capture a single source of nectar and to produce single source varietal, the beekeeper needs to strategically place colonies of honeybees on or alongside a vast area of the exact same blossoms, such as clover, acacia, alfalfa, or in the above case, lavender.  There should be at least a square mile of the same kind of blossoms in the area blossoming at about the same time.  The blossoms need to be attractive to the bees, and there should not be any competing flowers nearby that could dilute the flavor of the honey – especially other kinds of flowers that are equally or more attractive to the bees.

For most backyard beekeepers, producing single source honey is entirely out of the question.  With houses nearby and all sorts of flowering gardens, the honey produced is nearly always a blend of “wildflowers”, or more accurately, garden blossoms.

At Wildflower Meadows, we have seen our bees working lavender blossoms from time to time.  Occasionally, a nearby enterprising gardener will plant a garden of lavender, usually for some sort of aromatherapy or essential oil project that they have in mind.  Our bees are most pleased to do their part and pay a visit. Unfortunately, however, there is never even close to enough lavender to consider the resulting honey single source.  Obtaining a particular honey varietal is an art unto itself, and takes a knowledgeable beekeeper that is dedicated to this singular pursuit.

What Attracts Honeybees To Flowers?

 

When flying about, honeybees’ two most powerful senses are their eyesight and sense of smell.  When at full bloom, flowers’ most attractive features are their beauty to the eyes, as well as their fragrance to the nose.  Is this a coincidence?  No.  Honeybees are designed to find flowers, and flowers are designed to find honeybees.

Did you ever wonder why flowers are almost never the same color as the plant itself?  The flower on any plant needs to stand out, and be as beautiful and fragrant as it can be to attract the bees that it needs for the next generation of plants to survive.

As humans we also appreciate the beauty and fragrance of a perfect flower.  But compared to what a bee experiences, our visual perception of a flower is downright drab.  It is as though we are looking at an old scratched computer screen while the bees are watching a 3D movie in IMAX!  Not only is a bee’s sense of smell keenly more acute than ours, a bee’s eyesight is perfectly optimized for identifying flowers.

You may not know this, but flowers display a richness that largely escapes our range of vision.  Bees see in a different range of frequencies, or spectrum, than humans.  Whereas a human’s eyesight ranges from red to violet on the color spectrum (the colors of the rainbow), the bees’ vision ranges from orange to ultraviolet.  Bees cannot see red, but they can see well into the ultraviolet spectrum.  In the ultraviolet spectrum, many flowers have an iridescent quality, in which they appear to change color or flicker from one color to another.  While we humans fail to see this beauty, the bees identify it immediately.

A bees eye view of the same photo

If humans could see into the ultraviolet spectrum, we would see iridescent colors in a flower, along with patterns on the petals of flowers that seem to almost point the way to the nectar source.  A dandelion, when seen in the UV spectrum, is not completely yellow but has a rich and darker looking center that immediately draws attention.  That center, not coincidentally, is where the nectar lies.

Bees’ vision is also vastly faster than ours, which means that they can identify changes in colors while on the move. In fact, honeybees can actually identify individual flowers while traveling at high speed!  Is it any wonder why scout bees never fail to “stop and smell the flowers” along the way?

Everything is Just Right

Wildflower Meadows’ employees have been out and about lately moving bees in anticipation of the upcoming queen-rearing season.  Raising queens waits for no one, and the work generally continues rain or shine.  At this time of year, we spend our mornings grading our bee stock, then shuffling individual colonies to the proper yards.  Breeders go to the queen rearing yards, strong drone rearing colonies get consolidated near our mating areas, colonies are re-graded, and so on . . .

On the surface, this photo looks like a miserable situation.  Here, one of our employees is moving a few breeder colonies to our queen-rearing area.  It is pouring rain, and around the apiaries there is mud absolutely everywhere.  One might think that all is wrong, but truly, everything is just right.

First of all, we are finally experiencing rain here in Southern California!  This means that the drought conditions are subsiding, and the bees will have an abundance of foraging opportunities later in the season.  Second, the breeders that we are selecting look great!  They have overwintered exceptionally well and are now being handpicked for the upcoming season.  Third, our Columbia rain gear comes from the Pacific Northwest, where they know a thing or two about rain and keeping a person dry.  And finally, because we just installed new mud tires on this pickup truck – we are just in time to have a little fun and sling some mud!

Mud Slinging

Numbering Bee Colonies

Unlike most commercial beekeepers, at Wildflower Meadows we number all of our bee colonies and keep track of each colony individually.  Numbering bee colonies is not an original idea, and it adds a significant amount of record keeping and tediousness to each day’s work.  However, in our opinion, the information gained is more than worth the extra effort.

Once bee colonies have numbers, a whole world of knowledge opens up.  At Wildflower Meadows, we use colony numbers to track the individual queens inside each colony.  We can then compare queens of different ages, races, gene lines, histories, and therefore determine what the best performing queens have in common.  This information helps us to determine what is working, or not working, and enables us to develop an edge on queen selection and breeding.

Numbering colonies is not only useful for queen producers; beginning and small-scale beekeepers can also greatly benefit from keeping records on each colony.  With numbers and records, learning speeds up.  Beekeepers can test different practices on different colonies, test new ideas, keep track of the results, and begin to understand what works best for the health and well-being of their bees.

Winter Shut Down

In mid to late summer, a bee colony size is at its peak.  Later in summer, and leading into autumn, bee populations naturally decline, which follows the general decline of Mother Nature’s available nectar and pollen.  By the time winter arrives, a beehive has reduced its population to a minimum cluster of bees, whose main goal is survival to the next season.  By December, a typical bee colony, even if perfectly healthy, will have only about four to six frames of so-called “winter bees” and no new brood, as queens shut down brood rearing in the winter due to the cold and lack of forage.  The colony stays in this sort of semi-hibernation until spring comes along, bringing warmer days and new blossoms.

In California, the winter shut down is less pronounced, as bees continue to forage in many coastal areas year-round.  Eucalyptus and jade flowers bloom during the winter, providing coastal bees a reliable late season nectar source.  Nevertheless, even in California, a typical hive of bees begins reducing its population, so that by the middle of December a bee colony’s population may be about half of what it was only a few short months ago.

Wildflower Meadows would like to thank all of you for a successful 2016.  We wish you all a joyous holiday season, and best wishes for a prosperous New Year!

The Queenless Roar

When a queen bee is removed from a colony of bees it does not take long before the colony becomes aware of her absence.  Usually within about five hours, a noticeable buzz begins to develop inside the hive.  This buzz continues while the colony remains queenless.  Experienced beekeepers are sensitive to this sound and sometimes can successfully identify a queenless hive just by this unique colony-wide buzzing.  Many beekeepers call this the “Queenless Roar.”

How can the honey bees know so quickly that they are without a queen bee?  Each healthy queen bee produces a substance called “queen pheromone” that enables the bees to sense her presence inside the colony.  When the pheromone disappears, or when an old and weak queen stops producing it sufficiently, the bees take notice.  Without the queen pheromone in the hive, the bees become distressed, and they will shortly begin constructing emergency queen cells from young larva and begin to raise a new replacement queen.