Tag Archive for: Bee Behavior

A Honey-Bound Colony

Who isn’t overjoyed with a beehive that’s filled with honey? Sometimes, however, there can be too much of a good thing. When a hive fills up with honey, and the bees continue to forage and plug all the extra space with even more honey, the bees face a real problem. So where will they store all this new honey if the hive is already full or near full capacity? Even worse, what if a honey flow is still in the works and fresh nectar continues to pour in rapidly?

Bees naturally like to store honey on the edges of their hive, as the sides and the top are their favorite places for honey. They also like to leave the central portion of the hive free from honey so that they have open space for brood rearing. The honey on the outside provides a natural layer of insulation. It leaves the center region of the hive available for egg-laying and brood-rearing. If all is going well, there typically is an equal balance of honey and brood in a beehive, with the insulating honey on the outside and warm brood on the inside.

When bees in a hive run out of open space to pack in new nectar, they really have no place else to turn other than to creep into the brood area. As the foraging bees in the colony begin to use the only available open space for offloading nectar—the central brood chamber—the beehive becomes out of order. This means that over time the queen’s area to lay eggs keeps reducing to the point where she finds less and less space to do her thing.

Honeybees never stop foraging. Even when their hive is full of honey, the bees can’t help themselves! They keep going, bringing in more and more honey. This means that unless the honey flow slows down or the bees somehow have more space, they will quickly encroach their brood area. In most cases, to resolve this problem, the bees’ instinct will be to swarm.

As a beekeeper, allowing a colony to become honey-bound and wanting to swarm is bad beekeeping. There is no reason for this to happen. As soon as a beekeeper becomes aware of a strong honey flow or the beginning stages of a honey flow, the beekeeper should provide sufficient space for the bees to store the honey. They can do so by removing honey frames or by adding an empty super.

Did you know that a beekeeper can even create honey-bound conditions by over-feeding? Sometimes, we have seen beekeepers go overboard with supplemental syrup feeding during a dry spell. This leads to the same effect, even without a natural honey flow! The bees store this abundance of syrup, so the entire brood area gets clogged. If this happens during the late summer or fall, when the bees might not be tempted to swarm, the bees shut down brood rearing due to the lack of space. The result is a colony that naturally shrinks its population for no other reason than being honey-bound and having no brood space.

Laying Workers

A funny thing can happen to a beehive when it remains without a queen for too long.  The colony becomes so desperate for a queen that some of the workers take on the role of the queen and begin to lay eggs.  This is what is called “laying” workers.”

Normally when a colony loses a queen bee, it immediately sets out to raise emergency supercedure queen cells from its larvae.  If all goes well, the queenless colony will have raised a new queen within less than two weeks.  Within three or four weeks, the new queen will have mated and will be up and running, and the colony will have recovered and be back to normal.

However, any number of things can go wrong in this process.  The original colony may not have had any viable larvae for the colony to use to raise queen cells.  Or the queen cells might get a virus or disease and not survive.  Or a queen could die while on a mating flight, or not mate at all.  In short, there are no guarantees that a colony can always successfully requeen itself.

Usually after about four weeks of not having a queen the colony becomes stressed and desperate.  So, the colony’s emergency “solution” is that some of the worker bees take it upon themselves to “become” a queen.  This doesn’t really work because the workers who now think that they are queens never actually mated.  These laying workers are infertile, and are only capable of laying unfertilized eggs, which, unfortunately, only mature into drones.

As a beekeeper, when you inspect a colony with laying workers, you may, at first glance, think that all is well.  You see eggs and larvae, and it can appear that a healthy queen is in place.  There are, however, a few ways of determining if your colony has laying workers.  Here’s what to look for:

The signs that you might have laying workers are that you may notice a disproportionate quantity of drone bees.  A typical strong colony can have up to a few hundred drones.  But if you are seeing more than a normal number of drones – especially in a weak colony – this is a red flag that you have laying workers.

Another telltale sign is noticing more than one egg or larvae inside a single cell.  Laying workers are not experts in laying eggs like regular queens.  So, laying workers make plenty of mistakes and will often lay two or more eggs in a single cell.  Also, laying workers do not usually center their eggs in a cell.  They sometimes miss the mark and leave eggs on the side of the cell, or off center rather than positioning them in the center of the cell like a regular queen would.

Your first thought of a solution to your laying worker problem might be to requeen the colony.  Don’t even think about this; a colony with laying workers will almost never will accept a new queen.  For better or for worse (mostly for the worse) a colony with laying workers already believes that it has a queen.  Therefore, when a new queen is introduced, since the colony sees itself as already having a queen, it will see the new queen as an intruder and will kill it.

The best solution for a colony that has laying workers is to combine the entire colony into a strong, queen-right colony.  The pheromone of the existing queen will quickly overpower the meager pheromones of the laying workers, so that the colony will soon forget about their laying worker “queens”.  Let the two colonies work as one for a while.  In short order, the bees from the colony of laying workers will completely combine with the strong colony, and become one with the original queen, long forgetting about the laying worker situation.

Later, you can make a new divide out of the strong colony, purchase a new queen for the divide, and start over fresh again.

Why Do Bees Produce So Many Drones?

Drone bees often get a bad rap—they don’t produce honey, don’t defend the hive, and they consume vital resources. So then why do queen bees produce so many of them? The answer, put simply, is that there must be enough drone bees available at any given time in order to sustain the reproduction of bees and the viability of the species overall.

All queen honeybees must mate with drone honeybees. This mating never takes place inside the hive but rather takes place outside the hive while in flight. Several days after hatching, a queen bee will leave the hive for her first mating flight. Queens will only mate during a brief period of their lives; however, they mate with up to ten to twenty drones at a time, collecting and storing their sperm. By the end of her mating flight, a queen may have up to one hundred million sperm stored within her that she’s able to utilize for egg fertilization throughout the next several years of her life. Collecting sperm from multiple sources allows the queen’s offspring to be genetically diverse. This genetic diversity improves the overall health of the colony, furthering a colony’s ability to fight off disease.

The queen bee mating ritual happens at “drone congregation areas” where the queen is greeted by hordes of drone bees. Drones leave their respective hives—sometimes venturing miles away from their colonies—in hopes of being one of the few lucky suitors. Unfortunately, the process of successfully mating often results in the drone’s death as its endophallus is ripped off, leaving its abdomen open.

While many drones are lost due to successful mating, realistically, drones only have a 1 in 1,000 chance of mating with a queen—meaning that many drones don’t actually die from mating at all.

In addition to the loss of drones that meet their ultimate demise through mating, many drones are lost from other causes. The flight to drone congregation areas can sometimes prove to be a difficult feat, resulting in drone loss due to natural and environmental reasons. These losses are normal and need to be made up by excess drone production in the individual colonies that surround the drone congregation areas.

What Happens When a Queen Bee Dies?

The queen bee is the heart of the hive and the life source of the colony. Without a queen bee, a colony cannot function.

A queen bee may meet her demise in various ways. Sometimes, death may come suddenly, perhaps from a beekeeping accident or an unexpected attack from other bees. Other times, a queen may live a long life and die of old age.

When a queen bee dies, the entire colony becomes aware of her absence within as little as four hours. The bees figure this out by the lack of the queen’s pheromone. In a healthy beehive with a queen, the bees constantly pass along a queen’s pheromone from one bee to another as the bees shuffle through the hive. This movement circulates the queen’s scent within the hive. The absence of this pheromone indicates to the rest of the hive that a queen is no longer present.

Once this realization takes place, the bees switch into emergency mode. The colony appears agitated, and the bees start buzzing loudly. This distinct buzzing is what some beekeepers call a queenless roar. This urgent realization of queenlessness triggers the raising of a new queen.

A healthy colony will attempt to replace a missing queen by initiating multiple queen cells. Producing a new queen begins when a few young larvae are chosen for special treatment and are fed a special diet of royal jelly throughout their development. It takes approximately 16 days after eggs are laid before any virgin queen bees hatch from these queen cells. Typically, the emerging virgin queens will fight each other, leaving only one alive to venture off to become mated and then mature to become a laying queen. This maturing process, which occurs after a successful mating, takes another 7 to 10 days.

This lengthy process requires the colony to continue without a queen. During this period, while the colony waits for the new queen to be established, it is especially vulnerable to becoming permanently queenless. If, for whatever reason, the colony’s virgin queen does not properly mate, or if the virgin queen gets killed somewhere along the way, the colony is sunk. The colony now has no more larvae to manufacture a new queen. Therefore, unless a beekeeper intervenes with a commercially raised queen, such as one purchased from Wildflower Meadows, the colony will eventually dwindle and die off.

Why Do Beekeepers Need to Purchase Queen Bees?

While each of the honeybees in a hive plays their own role, the queen bee is unique in that she influences the behavior and performance of an individual colony in a way that no other single bee can. She is the genetic backbone of the colony—and all the bees, as her offspring, carry her genetic signature.

As a result, beekeepers know that they can control the performance of a colony to a significant extent simply by managing the quality of the queen bee in the hive. There are two pieces to assessing a queen’s quality: the performance of her offspring, and of course, her own performance. Both are vital.*

For assessing a queen’s offspring’s performance, a beekeeper commonly considers the following:

  • Disease Resistance: Is the colony robust and able to withstand diseases such as American foulbrood?
  • Temperament: Are the bees gentle and easy to work with?
  • Honey Production: In conditions of good nectar flow, are the bees making a considerable amount of honey?
  • Honey Consumption: Does the colony save its stores or consume large amounts of honey, requiring extra supplemental feeding?
  • Population Control: Does the colony have the desired population at the right time of year?
  • Mite Resistance: Does the queen carry the VSH trait to control the spread of parasitic mites?
  • Swarming Tendency: Does the colony seem to want to swarm more than normal?
  • Overwintering Success: Does the colony appear very weak in the spring?

In assessing a queen’s own performance, the beekeeper also considers the queen herself:

  • Laying Performance: Is the queen laying enough eggs and in a tight brood pattern?
  • Quantity of Drones: Is the queen laying more drones than worker eggs?
  • Health: Is the queen injured?
  • Age: Is she young and vigorous, or aging and on the way out?
  • Presence: Is she even in the hive, or did she perish somewhere along the way?

So, why do beekeepers need to purchase queen bees? The first reason is to manage the genetics of the offspring. The second is to manage the performance of the queen herself.

The third, and perhaps most common reason for purchasing a queen bee, is to enable the beekeeper to easily divide or split an existing colony. All new colonies need queens. The easiest, most reliable, and most surefire way for a beekeeper to obtain a quality queen of known genetics is to purchase that queen from a reputable queen breeder.

*With an instrumentally inseminated breeder queen, the queen’s own performance is more important than the offspring’s because the genetics in the offspring are already largely predetermined due to the selection of the parents.

The Dance of the Honeybee

Many beekeepers may notice their honeybees dancing, but they may not realize there’s a lot more to it than a captivating show. Dancing is the main “language” of the honeybee, allowing them to communicate important information to one another. As with many species in nature, communication is vital to existence. A honeybee colony relies on communication, teamwork, and of course, resources – such as water, food, or shelter, to survive. Afterall, without resources to sustain the colony, there’s no hope for a strong, thriving hive.

Worker bees forage for resources and return to the hive to inform others once they’ve made a discovery. To efficiently collect the new resources, honeybees must first communicate the distance and directions to the resource’s location. When the bees return to the hive, they bring samples of the nectar or pollen they’ve discovered to distribute to the colony. While the taste and scent of the sample helps bees to know what’s available out there, more specific information about the location is shared through dance.

Once the sample has stirred interest and gathered an audience, worker bees begin their dancing. Bees use different patterns within their dance performances to provide specific details about the location to fellow worker bees. They will usually perform one of a few dances: the round dance, the waggle, or a mix of the two. There are important differences between these dances, including how they look and what information they provide.

The round dance, also known as “circle dance”, has a simple pattern. Bees simply walk in a circle, turn around in the opposite direction, and walk the same circular path. They will repeat this action several times, however, the dance provides information about only one thing – the distance the resource is from the hive. The round dance is performed by honeybees when the new resource is located only a short distance from the hive, usually within approximately 50 meters. Although this dance does not give bees directions to the new resource, their keen sense of smell will pick up on the scent from the pollen or nectar sample that was shared.

Honeybee dancing begins to get a little more specific the further the new resources are from the hive. The waggle dance is performed when resources are more than 150 meters from the hive. This dance provides worker bees with plenty of information about the location, as well as directions on how to get there. When performing the waggle dance, also referred to as the “wagtail dance”, honeybees follow a figure-eight pattern with a side-to-side “waggle” motion in the middle.

It is this waggle motion that tells other bees the vital details they need to know, including which directions to take from the hive, and how far away it is. Worker bees may waggle with more enthusiasm depending on the quality of the food source, they may repeat the action more often, or they may change direction to indicate specific details about the path taken. In fact, researchers have found that the directions given by honeybees are extremely accurate!

Honeybees also use another dance that is a combination of both the round and waggle dance. The transitional dance, sometimes called the “sickle dance,” is performed when the new resource is located between 50 and 150 meters away. The sickle dance is very similar to the waggle dance, in that honeybees follow the same figure-eight pattern, however, with this dance, there is no waggle motion in between.

There is still some debate among researchers about how much honeybee communication relies on dancing, rather than their distinct sense of smell and inherently good vision. However, after several experiments, the majority of scientists have concluded that dancing is a vital part of honeybee communication. Although floral smells are important when locating nectar and pollen, the dance of the honeybee has proven to be essential to their ongoing survival.

What Happens When a Honeybee Stings?

One of the anxieties for almost all new beekeepers is being stung, and while it’s a valid concern, it’s one that experienced beekeepers hardly think about. When it comes down to it, getting stung is inevitable. If you participate in beekeeping, you will eventually experience a bee sting – probably more than once. The sooner that you embrace and accept this inevitability, the more comfortable you will become.

So what exactly happens when a honeybee stings?

A honeybee stinger is hollow and barbed in shape, meaning once the stinger goes in, it doesn’t come out – it’s stuck and embedded into the skin. The real damage happens when the honeybee attempts to remove its stinger. When the bee pulls away, it leaves its stinger behind, along with its venom sack, and other internal structures – ripping them violently from the bee’s body and ultimately killing the honeybee.

There’s a method to this madness believe it or not – and it’s not so great for the person, or animal, on the receiving end. The muscles attached to the bees’ venom-filled sac continue to work the stinger in deeper, increasing the amount of venom being released with each passing minute. If you’ve been stung, you’ll want to remove the stinger as quickly as possible, but be sure to scrape the stinger away – don’t pull it out.  Pulling the stinger out requires you to squeeze the venom-filled sac, which ends up pumping even more venom into your body.

A sting will cause immediate pain at the site that will last for several minutes while becoming red and flush. The site may begin to swell, however, the rate and severity of swelling will vary case by case. Luckily, there are many ways to help minimize the effects of a sting. To help reduce pain and itching, apply ice to the area. You can also take an antihistamine like Benadryl to help with itching and suppress the overall reaction.

Each person reacts differently to being stung, and while most people have little to no reaction at all, occasionally the effects can be serious.  There are two kinds of reactions to bee stings – normal and anaphylactic.  Normal reactions, while often painful and uncomfortable, are of far less concern than the other type of reaction – anaphylactic. The majority of people, fortunately, experience normal reactions to bee stings.

Unfortunately, a small group of individuals may experience anaphylactic reactions to bee stings.  Anaphylactic reactions are systemic reactions, meaning that areas of the body far removed from the actual sting respond adversely.  For example, a person experiencing an anaphylactic response to a sting will sometimes experience difficulty breathing and speaking due to swelling of the tongue or throat, itchy, red hives, dizziness, nausea, and vomiting, or even loss of consciousness. An anaphylactic reaction is an extremely dangerous situation that can potentially lead to death.  People experiencing an anaphylactic reaction need to seek immediate medical attention.

Queen Introduction – Balling the Queen Bee

Beekeepers have struggled with how best to introduce a new queen into a beehive for ages – whether they’re wanting to requeen an existing colony of honeybees or place a new queen into a newly created colony. When a colony of honeybees is presented with a new queen, the bees’ first instinct is to act aggressively towards her. Since her pheromones do not match the hive, the bees see the new queen as an intruder and will instinctively come after her.

If a newly introduced queen is not protected during the introduction period, it is almost guaranteed that the colony will kill her. The worker bees will approach her aggressively –quickly grabbing onto her and not letting go. First, one bee starts this behavior, then another, and another – before long, honeybees will surround the queen, grabbing on and not letting go.  This is known as balling.

When a newly introduced queen is being balled, she is in trouble. The worker bees will grab at her body parts, and very possibly, sting her to death. This is why queen honeybees are almost always introduced to a new colony while inside some sort of cage. The cage protects the queen from an almost certain onslaught and gives her a safe place to hide.

Even with a cage, the bees will still attempt to ball the queen. However, with a cage in the way, the most that the bees can do is grab onto the cage and attack it, sparing the queen inside. Over time, the worker bees gradually cease balling the cage – one by one giving up and allowing the queen a little reprieve, while she is still safely protected inside of the cage.

While this is all happening, the colony’s worker bees are eating through the candy release tube in the cage. Well before the bees have worked their way through the candy, the balling bees have given up and have gone back to their usual work within the hive.

Even once the queen has been released from her cage, she still is somewhat at risk for renewed balling, until she actually starts laying eggs. This is why most experienced beekeepers, including us at Wildflower Meadows, always advise leaving a colony alone for a full week after the introduction of a new queen. Only when she is laying eggs can a newly introduced queen be truly considered as accepted by the colony, and relatively free from the risk of being balled.

Protecting Beehives From Extreme Heat

Bees are surprisingly adaptable to most weather events.  They know how to stay dry during rainstorms, stay cool during summer heat, and even survive the most brutal of winters, such as those in Russia and Canada.  However, when the weather becomes dangerously extreme, bees – like all living creatures – can be challenged to survive.

Recently, Wildflower Meadows’ experienced a powerful heatwave that affected most of our apiaries.  The temperatures in many of our apiaries surpassed 105 degrees.  Yet our bees survived.  How were they able to do this?

The answer is simple: shade and nearby water.  Our beekeepers were concerned about the safety of the colonies heading into the weekend, because bees can’t really survive extended periods of extreme heat without the benefits of shade and close water.  The bees need shade during times of extreme heat, because the sun beating down on the lid of a hive can heat the upper portion of a beehive to dangerous and possibly lethal levels – in some cases even above the melting point of beeswax!  We all know that bees also need a reliable water source; but more importantly during extreme heat, they need their water source to be nearby.  When the temperatures reach near 110 degrees, bees generally stop flying.  Only a few brave foragers will dare to head out for water in that kind of heat, and they won’t be able to fly far.  If the water supply is too far away from the hive, the bees will not be able to access the water that they so desperately need in order to survive.

Fortunately, our bees were able to survive the heat because we took precautions to protect them before heading into the weekend.  As the majority of our apiaries are out in the open and have no shade, we provided makeshift shade to each and every colony by placing a second lid over the first.  This setup not only provided shade, but also produced relatively cooler airspace over the colony, significantly reducing the risk of overheating.  And, it worked!

If you are trying to shade your bees and don’t have extra lids, any piece of plywood will do.  Some of our commercial beekeeper friends whose bees are on pallets often place empty pallets over their bees to provide the same effect.

The second precaution is for you to be sure – absolutely sure – that your bees have access to plenty of fresh water, as close to the apiary as possible.  You also need to keep your eye on the water level, because when the temperatures rise, the bees will consume a lot of water.  The colonies in our queen rearing yard went through nearly 70 gallons of water in just two days!  That is a lot of water for bees, but it saved their lives.

And finally, if you are fortunate enough to have running water and a hose nearby, the bees always appreciate a cool shower or two.  The benefits are twofold, because the water not only cools the hive, but then the bees can later drink up the drips without having to fly far.

Do Honeybees Fly at Night?

Honeybees can, and do, fly at night provided there is light.  If one shines a bright light upon a colony, the bees, both young and old, will wake up and fly out to investigate the disturbance.  Bees, like all insects, instinctively fly into bright lights at night.  However, in a normal, typical dark night, honeybees struggle to navigate and instinctively desire to instead “hang out” at the hive.

Most of us know that honeybees return to the hive at nightfall.  The usual nighttime bee activities include keeping the hive warm, cleaning up debris, processing the day’s nectar, pollen, and/or syrup collection, and of course, sleeping.  Yes, honeybees do sleep at night!  The foragers, tired out from their long day seeking nectar and pollen, tend to sleep for longer spells, whereas the younger bees sleep for shorter periods.  This enables the youngest bees to be active for portions of the night, when they take care of the necessary housekeeping activities that keep the hive healthy and productive.  On the other hand, the foraging bees need to work all day, so they take much of the nighttime to sleep.

Sometimes a foraging bee will get caught up in all of its exciting daytime work and lose track of time.  The poor bee may look up and face the harsh reality that it is now too late to make it home before nightfall.  When there is not enough light to safely fly, the bee will have to land someplace comfortable and try to endure the night alone.  In the summer months, this is usually not a problem.  In late autumn, however, a situation like this can be fatal.

Believe it or not, certain species of bees, primarily in tropical areas, do the majority of their flying at night!  These special kinds of bees have evolved to take advantage of species of flowers that bloom only at night.  They are night pollinators.  For us beekeepers, however, it is a good thing that our honeybees don’t like to fly at night.  Otherwise, it would be nearly impossible to find a good time to move the bees or to find any downtime for us humans!