The First Mated Queen Bee Of The Season

Behold, the first mated queen bee of the season!

Around the middle of March, Wildflower Meadows begins harvesting its first mated queen bees of the season.  These early-season queens hatched and took flight in February to mate with the some of the first drones of the season.  A lucky customer will surely be excited to receive this beauty.

Let’s keep in mind, however, that in agriculture, being the first does not always equate to being the best.  For example, the first peach of the year is typically not quite as sweet and juicy as mid-season peaches.  For that matter, the last peach on the tree is generally not that good either.  The best peaches are usually those that are harvested right in the heart of the season, when there are a million other peaches to choose from.  Similarly, the best queen honeybees are usually mated at the peak of the season, when the queen raising conditions, the weather conditions, the drone saturation, and the mating are all optimal, and everything is coming up “peachy”.

That said, this early season queen has some unique characteristics that set her apart from the others.  First, she’s the first!  You can’t deny that.  There aren’t that many of her kind right now, and everybody wants her.

Secondly – and much more importantly – she’s holding onto some unique genetics.  The drones that mated with her are by definition the earliest drones of the season.  They come from colonies that are the first to buildup, and are showing unusual strength in the early spring season.  These drones also originate from winter survivor stock, unlike some of the season’s later drones, which will originate from same season stock.  In other words, the colonies that produced these drones are real go-getters!

It is most likely that the offspring of this queen, because she now carries the genetics of these early season drones, will exhibit the prized quality of early season vigor and rapid buildup at the start of seasons to come.

Eighty Years Later: A Tribute To O.W. Park

park5

Today we take for granted the idea that beekeepers can prevent American Foulbrood and other infectious diseases with antibiotics.  Back in the early 20’th century, however, there existed no effective way to control infections.  Penicillin had not even been discovered until 1928, and it was a number of years later before the first antibiotics became commercially available.

With the absence of antibiotics, beekeepers of the time struggled mightily with American Foulbrood, an infectious disease that routinely killed beehives (and still does today).  The only way that beekeepers of the time could control this deadly disease was to burn infected hives and equipment to keep the disease from spreading.  Even to this day, a sizable percentage of beekeeping books still speak of the need to burn equipment that is infected with American Foulbrood.  That this message of burning infected equipment carries forward all the way into 2016 is a testimony as to how severe this rampant and deadly disease was – and especially with the advent of resistant antibiotics – still is.

It is easy today for all of us to take for granted the concepts of “resistant bees,” “hygienic behavior,” “treatment free beekeeping,” etc.  These are commonly used terms, and relatively well-known concepts in today’s beekeeping world – especially when it comes to queen rearing.   It is hard to imagine that eighty years ago, in the mid 1930’s, these concepts did not exist.  Beekeepers weren’t even aware that bees could be selectively bred to establish these desirable traits in honeybees.

In 1935, a visionary beekeeper, O.W. Park, noticed that certain colonies seemed to be resistant or immune to American Foulbrood.  He had an idea:  What if honeybees could be bred to be resistant to American Foulbrood, and the disease could be controlled with the genetics of the bees themselves?  Starting with 25 strong and apparently resistant colonies, along with six control colonies, Mr. Park, along with his associates, set out to test this theory.  He then purposely exposed and infected all 31 colonies with infected American Foulbrood larvae!

What then happened?  All of the six control colonies, and many of the 25 resistant colonies died.  But, amazingly, seven of the resistant colonies survived.   In 1936 Mr. Park then bred a second generation of colonies from this “survivor stock,” which proved to show an even greater level of resistance in the next generation.  In the process, Mr. Park pioneered the concept of identifying resistant bees, and selectively breeding bees for disease resistance.  He also proved that this concept works, and can yield real and positive results.

2016 marks the eightieth anniversary of this landmark study on disease resistance in honeybees.  A full eighty years later, beekeepers continue to carry on in the shadows of the visionary, O. W. Park.

 

Grafting Queen Bees

The act of transferring young larvae from breeder queens into cell building colonies is called “grafting.”  Queen producers do a lot of grafting.  Every future queen bee for sale begins with the simple act of grafting; the transferring of larvae from a breeder queen into a cell cup, and then into a queen cell building colony.  It is with this method that the entire commercial queen rearing industry produces queen cells, which hatch into future queen bees.

Grafting is one of the more technically challenging parts of raising queens.  The grafter should have excellent eyesight, and a sure hand to be able to pick up tiny larvae that are about the size of the tip of a ballpoint pen.  The grafter uses a special tool (known as a grafting tool), which slips underneath a larva and scoops it up along with some of the surrounding jelly.  The larva is then carefully placed in the center of the receiving cell cup.  Ideally, there should be no impact on the larva whatsoever; as the act of grafting needs to be a smooth and gentle process.  Larvae are extremely fragile, and grafting needs to be done in a warm, well-lit, and relatively humid environment.  Speed is also important, as the larvae should not spend too much time outside of the colony and run the risk of drying out.

We have found that our best grafting sessions take place when we are calm and relaxed.  Too much sugar or caffeine can lead to a shaky hand!  Calm and steady is the key, one larva at a time.

Photo is courtesy of Glenn Apiaries, with permission.

Which Direction Should Beehives Face For Best Pollination?

Many experienced beekeepers suggest that the entrance of a beehive ideally should face towards the south or to the east.  The southern exposure makes sense.  During the winter months – at least in the northern hemisphere – the sun sits low on the southern horizon.  The direct rays of sunshine on the entrance during the late fall and early spring enable a beehive to potentially gain some sunlight and extra flying hours.  An eastern exposure is also valuable because when facing east, the bees tend to get an earlier start on foraging throughout the season regardless of the angle of the sun.

Most of the time, however, it doesn’t matter all that much.  Many backyard and urban beekeepers are limited in their options on how and where to place their bees.  The truth is, bees are flexible, and most of the time they adjust well to the environment they are in.  When it comes to almond pollination – which is about to take place this month – almond orchard owners take no chances on the placement of the beehives that pollinate their groves.  Each year, a staggering 1.6 million colonies are rented for almond pollination.  Almond growers pay a small fortune to rent these bees, and they usually have specific requests on how they would like them placed.

One of the issues affecting bee pollination of almonds is weather.  Almonds are pollinated in February, a typical month of adverse weather not only in California, but most everywhere in the United States.  Honeybees do not fly until daytime temperatures exceeds 55º F.  Obviously, a grower cannot control the weather, but he or she can control the way that the rented colonies are placed in the grove so that the bees obtain as much sunshine as possible.  Growers typically request that beehives should face the sun, and the boxes should not be shaded by the trees or by other beehives.

To give an almond grower good value, the beekeeper should strive to place most beehive entrances facing due east or southeast, so that the bees catch the early morning sun and get off to an early start.  Also, a certain percentage of the colonies should face west.  The west-facing colonies will often fly right up to the evening hours, usually after the east-facing colonies have shut down.  Plus, on a day where rainy weather clears up later in the afternoon, the west-facing bees might still have time to venture out, while the east-facing colonies remain shut down.

El Niño

After four years of drought and a general lack of rain, things are finally getting wet around Wildflower Meadows!

The first week of 2016 alone brought over three inches of rain to our queen rearing apiaries, giving the parched ground a nice soaking.  The spring rains of El Niño, assuming they continue, should provide a noticeable difference to the bees’ well-being later in the season.

Early season rains offer a welcome boost to the plants and crops that the bees rely on later for food.  In past drought years, even though honey-producing plants bloomed as usual, the flowers were often dry.  Our bees would visit their favorite flowers and would come home empty.  The plants, stressed by drought, were holding back the little water they had, and not giving up any surplus moisture to their flowers and the bees.

As a result, most California beekeepers, including Wildflower Meadows, were forced to feed their bees much more than normal over the past several years to make up for this ongoing deficit.  Hopefully, with higher ground saturation in 2016, the plants will have more moisture to spare.  Once the plants begin to flower, honey production should improve, and nectar should be more plentiful.

In the near term, however, the heavier rains mean less foraging time for the bees.  Bees are not at all interested in flying in the rain.  The steady rains and blustery weather force all but the bravest bees to stay inside their hives until the weather clears.  With less foraging time, bee colonies often need additional feeding while the rains keep them confined in their hives.

It’s too bad that we beekeepers can’t stay inside during the rain too!  For better or worse, our beekeepers have to head out and brave the rain to feed bees, move hives, gear up for queen rearing and so on.  So far, we haven’t gotten any of our trucks stuck in the mud, but it’s probably only a matter of time . . .

Beeswax

Pictured above is some genuine Wildflower Meadows’ beeswax that we recently cleaned and filtered.

Bees produce beeswax from several glands in their abdomens, which they use to build their honeycomb.   Usually beeswax production is at its highest when honey is flowing in.  It takes an extraordinary amount of honey to produce an equivalent amount of beeswax; most estimates are that up to twenty pounds of honey are required to generate a pound of new wax.  At times of the year when honey is not flowing strongly, the bees prefer to recycle existing wax, moving it around for comb repairs and other needs, rather than generate new wax.

At Wildflower Meadows, our bees do not produce much surplus beeswax.  As a company dedicated to queen rearing, our bees are not necessarily optimized for either honey or beeswax production.  Rather, we have many small mating nucs, which are designed to raise queens rather than collect surplus honey.  Occasionally, however, especially during strong honey flows, our colonies can get clogged up with beeswax.  The bees get so excited about the incoming nectar and honey that they start building wax everywhere!  We often have to clear wax out of the area in and around the feeders so that the feeders do not get clogged and unusable for later in the season, when the bees will need to be fed.

If we collect enough beeswax – a little at a time – we sometimes can end up with a tray or two in a season.  When the surplus wax is cleaned and filtered, it is a joy to behold.  The beeswax is soft and fragrant, naturally golden like the flowers it was sourced from.  Beeswax has been used for millennia, primarily for candle making and cosmetics.  Most beekeepers will agree: there are few things quite as satisfying as slow-burning, fragrant beeswax candles made from your own beeswax!

Flowers In December

In the Northern Hemisphere, not too many plants offer honeybees blossoming flowers during December.  One exception is the jade plant, also knows as Crassula Ovata.  In most parts of the country, jade is a houseplant, but here in California, jade grows outside, primarily in outdoor household gardens.  Jade, a native of South Africa, is a succulent plant that thrives in subtropical climates and doesn’t require much water.  Therefore, it is especially popular with water-thrifty homeowners in California.

To produce blossoms, jade takes its cues from the weather.  It needs long nights, cool and dry days.  December in California fits the bill perfectly.  Usually around the first week in December, buds appear, shortly thereafter followed by somewhat sticky, pink and white, star-shaped flowers.

The bees in our queen bee yard are usually rather dormant in December, taking a well-needed vacation from the hard work of raising queens over much of the year.  Nevertheless, the blooming jade plants perk them up a little.  Where else can a vacationing honeybee get a nice serving of fresh nectar in the middle of December?

Wildflower Meadows would like to thank all our customers and friends for a successful 2015.  We wish each and everyone of you a joyous and happy holiday season.  Our best wishes to you all for 2016!

The Composure Of A Well-Mated Queen Bee

Near the end of this season we managed to capture a close up photo of a rather calm looking queen as she paid a visit to the “tattoo parlor” for her blue mark.  There is something peaceful about the mannerisms of a well-mated queen bee.  She exudes a sense of composure, which can practically be seen in the above photo.

This sense of calm is also noticeable inside the hive as a well-mated queen bee moves purposefully and calmly across the combs, laying her eggs in a meticulous circular pattern.  The other worker bees carefully surround her, gently touching her with their antennae to connect with her queen pheromone.

In handling a queen bee, as long as she is treated with care and respect, the queen typically will take her handling in stride, hardly putting up a fuss as she is given her color mark or placed inside a temporary cage for transport.  At times when we gently grasp a mated queen bee by her thorax or wings for marking (here by her legs), it feels like she is holding hands with us!

In handling countless tens of thousands of queens, to the best of our knowledge, no queen bee has ever attempted to sting any of us at Wildflower Meadows.  Although queen bees have a stinger, and theoretically can sting humans, they almost never do.  Instead, they reserve their sting – which is as potent as any other worker bee – for their traditional enemies: other queen bees.

Next Year’s Champions

During the height of the beekeeping season, while we are busy raising queens and shipping orders, another project takes place in the background.  Our breeding experts are assessing an assortment of bee stock obtained from around the country for the best of the best – the most mite resistant, the most gentle, the most hardy of all.  They then cross their best candidates with other desirable stock, typically pure VSH drones obtained from the USDA.  If all goes well, the results are outstanding breeder queens for the upcoming season – next year’s champions.

Around the end of each season, we look forward to receiving a new group of these hand-selected breeders to add to our existing proven stock.  This assures us a ready selection of quality queens from which to breed at the start of the next season.

We recently received our final set of this season’s breeder queens.  Number 63, pictured above inside a push-in cage, arrived with high accolades.  Her offspring is light and gentle, and contains both the Pol-Line and VSH traits.  She is precious, and we are taking all precautions for her well-being!

To introduce her into a new colony we used a homemade push-in cage.  This type of cage allows the queen to begin laying eggs in a safe and controlled area before the cage is removed and she is fully released into her new colony.  By laying eggs before she is released, she becomes more desirable and better accepted by her new colony, greatly increasing the odds of her successful introduction.

Screened Bottom Board

The Screened Bottom Board

When varroa mites first came on the scene in the United States during the late 1990’s, screened bottom boards followed shortly thereafter.  The concept of screened bottom boards appears to be sound:  varroa mites often fall off of bees to the bottom of the hive.  If the mites are regularly falling off the bees, then why not use a screened bottom so that the varroa mites continue their fall right out the bottom of the beehive?  Mathematically, any reduction in the growth of varroa is bound to help the colony of honeybees.

The main problem with the screened bottom board, is that over many years, no one has ever definitively proven that it works.  One question that remains to be answered satisfactorily, is that if the beehive is placed on the ground then what is to prevent the mites from simply crawling back up into the colony?

Nevertheless, at Wildflower Meadows we committed to using screened bottom boards a number of years ago, and currently run the majority of our colonies over screened bottoms.  In any case, screened bottom boards provide excellent added ventilation.  The screened bottoms also allow the debris from the beehive to fall away from the bees creating a hygienic environment, much in the same way that a feral beehive generally has no bottom.