The Hive Stand

Keeping a colony of bees on a hive stand is a real back saver!  Lets face it, nearly everything about the mechanics of beekeeping – the awkward shaped boxes, the heaviness of the honey, the repetitive tasks of bending over time and again – creates a certain recipe for back pain.  Given all of these back straining tasks, it is not uncommon that beekeepers will eventually develop back soreness.  Therefore, one of the ways to reduce back strain is to place a bee colony on a stand.

Besides saving backs, a hive stand offers other advantages too.  By keeping the colony and woodenware off the ground, the wood is less apt to rot from ground moisture.  A hive stand also keeps ground critters, such as skunks, raccoons and even rattlesnakes away from the hives.  In the early mornings, after a cold night the temperature a few feet off the ground is almost always slightly warmer than the temperature directly on the ground.

Another advantage of a hive stand is that if ants are harassing the colony, a conscientious beekeeper can place the legs of the hive stand in cups of vegetable or cooking oil, thereby building a barrier to keep the ants at bay.  This is a nice organic method of ant control that avoids the use of pesticides.

Most commercial beekeepers do not use hive stands.  Given that the larger commercial beekeepers usually manage their bees on pallets – either four or six colonies to a pallet – a hive stand simply will not work for them.  Here at Wildflower Meadows, although we do not use pallets, we also generally do not use hive stands either.  We simply have too many mating nucs and too many pollination colonies that need to be moved throughout the year to be able to efficiently take advantage of the benefits of hive stands.

At our breeding apiary, however, we make an exception and place our breeding colonies on stands.  It makes perfect sense, as the breeder colonies do not move from place to place.  And, since we work with these colonies nearly every day, it is a relief to all of us not to have to bend at the waist while working within the breeding apiary!

The Wildflower Meadows hive stand design, pictured above, is a double stand, which holds two colonies side by side.  Usually we place the entrances in opposing directions, so as not to confuse the bees as to which hive to return.

Although Wildflower Meadows’ hive stands are hand-made in our wood workshop, Mann Lake makes a similar hive stand with adjustable legs!

Production Of Drone Honeybees

Over the course of her mating flights, each queen bee will mate with up to 15 drone bees.  Most queen producers aim to create a scenario where at least 20 drone honeybees, and ideally many, many more, are readily available for each virgin queen bee when she heads out on her mating flights.  When producing queen bees for sale in large quantities, it quickly becomes obvious that the queen producer is also in the business of rearing drone honeybees.

At the height of the swarming season, especially when nectar is abundant, nearly all bee colonies instinctually produce large amounts of drones. Bee colonies will go out of their way to produce drone comb for the queens to lay drone eggs into, ensuring a steady output of drone honeybees. During these times of abundant drones, queen producers have it easy, with plenty of drones available to get the job done!

However, what about when drones are not abundant? It doesn’t always rain here in Southern California. Our summers are dry. Under these conditions, bees are not always inclined to produce drones on their own. When this happens, the queen producer must intervene, and supplement queen mating with additional drone stock. Much like our local ski areas in Southern California that often need to make up for a shortage of natural snow by blanketing their resorts with “snow making machines”, Wildflower Meadows has a similar ability to supplement the natural supply of drones by blanketing our mating areas with “drone rearing machines.”

Our drone production yards, like the one pictured above, are maintained in strategically placed locations surrounding the various queen mating yards. These drone production colonies, stocked with strong and excellent stock, are fed weekly throughout the entire season, both with syrup and pollen supplement – regardless of weather or environmental conditions. These colonies never know anything but abundance, and probably have no idea that they are in the midst of a drought. Life for them is good! The queens inside these colonies are confined to the lower box, along with easily accessible frames of drone comb and more than enough food. With this irresistible enticement, they effortlessly produce massive amounts of drones. The result? An entire apiary full of “drone rearing machines” and thousands of drones taking to the sky every day.

Fall Requeening

Fall requeening offers many advantages.  In the late season, queens are less in demand than in the early spring.  There are typically no long waits or sold out periods to contend with.  Another advantage of late season requeening is that by fall, many colonies are often not as strong and booming as they are in the height of honey production, and therefore, the requeening activity doesn’t interfere with honey making.  Also, the somewhat lower fall populations can make it easier to find queens.

After a nearly full season of beekeeping, it is easy to determine which colonies are underperforming, versus which are proven champions.  The latter probably do not need new queens, and these existing and proven queens can be “overwintered” and carried forward into the next season.  The former, however – the underperforming colonies – can be given a fresh queen, offering them a brand new start and new hope for the next season.

With the impending winter, these new queens will not lay many eggs for the remainder of the current season, so that by the time next spring gets underway the new queen will still be relatively young with “low mileage.”  Hopefully, by next spring, she will be well established as an integral part of the colony, less apt to swarm, and about to hit the prime of her life just when Mother Nature’s timing is perfect.

Queen Pheromone

What is it about queen bees that are so attractive to worker bees?  When we took the photo shown above, we had just prepared six queens from the day’s harvest for introduction into our own colonies.  Note how the workers can’t seem to show enough love to the queens.  These attendants were so fixated on the queens that they traveled inside our truck like this without us even needing to put a lid on the box!  The workers simply had no desire to fly away nor to stop attending to the queens.

When we prepare shipments of bulk boxes, it is never a problem getting attendant bees motivated to stay and care for the queens.  A quick shake of a frame of bees into the box produces more than enough workers willing to stay with, and attend to, the queens the whole time they are in transit.

The queen pheromone is so powerful that bees will even drop out of the sky to investigate a box of queens!  When we deliver queens to UPS, we have been cautioned by the office staff not to arrive prior to 4:30pm, as any earlier causes curious bees to fly into their customer service center, potentially frightening UPS customers.

Inside the hive is no different.  Worker bees can immediately identify the presence of a queen, as well as the lack of a queen.  The method of this attraction is through a pheromone known as the “queen pheromone”.  The purpose of the queen pheromone is to signal to a hive that a queen is present and that she is recognizable.

A pheromone is a chemical that is secreted by a member of a species that can be used to control the behavior of another member of the same species.  Imagine how much love we could receive if we humans had a pheromone as powerful as the “queen pheromone”!

Queen pheromone is secreted near the head of the queen in an area above her jaw known as the mandibular.  Her secretions make her identifiable to all bees inside the hive; workers, drones, and possibly other queens.  The workers spread this pheromone throughout the hive using their antennae.  If this pheromone is absent, the colony will soon recognize its absence and will know that they are queenless.  They will then begin to construct emergency queen cells to raise a new queen.

Not only can a hive measure the presence, or absence, of queen pheromone, but it also able to measure the level of it.  A dip in the level of queen pheromone indicates that the queen could be beginning to fail.  This will often cause a colony to begin raising replacement queens for supercedure of the current queen.

It is well known that overcrowded bees are more likely to swarm than bees with ample space.  However, some beekeepers believe that the overcrowding of bees itself inhibits the transfer of queen pheromone throughout the colony, therefore causing the colony to raise replacement queen cells in anticipation of a swarming event.

The Fume Board

There are a number of ways of separating bees from their honey – some beekeepers use a simple brush, others use a bee blower – but the most efficient, at least in our opinion, is a fume board.  More often than not, the fume board is the tool of choice for commercial and larger scale beekeepers when it comes time to harvest honey.

Over the course of the honey flow honeybees pack the top boxes of their hives – called “supers” or “honey supers” – with fresh nectar.  They dry the nectar and convert it into honey.  With any luck, by the end of the honey flow, the super is full of honey.  A full sized or “deep super” can contain up to 80 lbs. of honey when full.

When it comes time to harvest the honey, a beekeeper needs to clear the bees from the super, so that the super of honey can be brought back to the shop for extraction and processing.  This is where the fume board enters the scene.  The bottom of the fume board is typically made of a sort of felt material.  The beekeeper sprays this material with a fumigant.  At Wildflower Meadows we use a natural spray made of almond oil extract, known commercially as “Bee Quick”.

 

Even though this spray smells great to us – something like almond marzipan – for some reason the bees can’t stand it.  Especially when the sun hits the board and begins to accelerate the fumes, the bees begin a rapid downward exit from the honey super, and thus leaving it free of bees.

Large commercial beekeeping outfits sometimes use up to thirty of these boards at a time to harvest a large-sized apiary.  With a crew of three or four beekeepers, each managing six or seven fume boards at a time, a commercial beekeeping company can harvest honey from an entire apiary of fifty or more colonies in about an hour!

Calling All Bees!

Once in a while, some of the bees in a hive need a little directional guidance from their sisters.  Individual bees can get lost or confused as to where the entrance of the hive is or where they should be.  No problem, that’s when some of the more alert bees take charge and put out the call to round up the hive and bring the group back together again.

When we humans want to round up friends from a distance we typically use sight or sound (or more frequently phone calls or text messages.)  When bees call each other from a distance, they use none of these.  The bees’ method of communication is a method that we would never think to use; they release a pheromone that signals the other bees to come together via the bees’ powerful sense of smell.

This pheromone is called the Nasonov pheromone.  Bees produce this from the tip of their abdomens.  When they wish to release the pheromone, they raise their abdomens and fan their wings vigorously, broadcasting the scent as far as they can.  It is not uncommon for a beekeeper working with a beehive to see some bees around the edge of the hive releasing this pheromone.

Often, the very act of the beekeeper opening the colony can disorient some of the bees, especially the foragers who are returning with nectar and pollen.  Fortunately, the Nasonov pheromone is a powerful call that brings the bees back home.

Beekeepers will also notice this activity when watching a swarm that has decided to settle in a particular spot.  At the edge of most swarms, a few bees can always be seen frantically calling their sisters to the chosen spot, and gathering the hive together once again.

Bees Hanging Out During Summer

When summer kicks into high gear and both the days and nights become unpleasantly hot, bees begin to feel the heat too.  One of the signs that summer has arrived is the sight of bees hanging out in front of their hive entrances, especially at nightfall.

Bees implement a sophisticated system of climate control inside the hive.  They maintain their brood nest roughly between 80 and 95 degrees Fahrenheit, with about 93 degrees being the ideal.  They also generally maintain at least 50% relative humidity within the beehive.  Any lengthy fluctuation outside of these temperature and humidity zones is dangerous for the health of the brood and the overall well-being of the hive.

During summer, the challenge of the bees is to keep the hive from overheating.  At this time of year they have two powerful factors working against them.  First, obviously, is the relentless and potent summer sun that bears down and heats everything up.  Bees overcome hot days by fanning water inside their hive, thus using water as sort of a honeybee swamp cooler.  This is why it is critical to maintain a reliable water source for bees near the hive.

The second, and less obvious factor that can overheat a hive is that beehives’ populations are often at their peak during June, July and August, with upwards of 40,000 bees in a single hive!  The sheer numbers of bees living so closely together can create heat of its own, further raising the temperature near the brood nest.

During the daytime, overcrowding is less of a factor because many of the forager bees and drones are outside of the colony.  At nightfall, however, when all the bees have returned, the hive can become populous again, and overcrowding and overheating becomes possible.

The bees’ answer to this overcrowding is a good one.  Why not sleep outside?  In the summer months, most healthy hives have a good percentage of bees hanging out in front of their hive’s entrance, especially in the evening.  These bees will spend most of the night outside, keeping themselves cool with a peaceful night’s rest under the soft moonlight.  More importantly, this also keeps the brood nest from overheating by limiting the number of bees inside the colony.  If the nighttime temperature chills, then the bees can head back inside to warm up.  If not, then they spend the entire night outside, just hanging out and staying cool.

Laurel Sumac

Around mid-June in coastal California – earlier in some years, and later in others – laurel sumac begins to blossom.  A favorite flower source of honeybees, laurel sumac produces large pods of creamy white flowers, which the bees eagerly work for both pollen and nectar.  Unlike most nectar sources, which result in the bees producing fresh white wax, laurel sumac produces a unique yellow-tinted wax.  The honey is also a yellowish light honey, which is especially mild and delicious.

The honey from laurel sumac is a uniquely flavored honey, somewhat comparable to wild sage honey.  In fact, much of California sage honey probably contains laurel sumac honey as well, since the two plants coexist in the coastal chaparral together and often bloom simultaneously.  Honey producers prefer to label the honey from laurel sumac as “sage honey”, however, since sage reads a lot better on a honey label than sumac.  In many people’s minds, sumac is associated with poison ivy, which is the notoriously toxic, and perhaps best-known member of the sumac family.

Young Larvae

When you look at a healthy young queen bee, it is sometimes hard to imagine that only a month or so earlier, she was actually not recognizable as a bee, but rather existed as a larva.  For the first four to five days after emerging from an egg, a future queen bee is a larva, which is helpless and must be cared for and fed by other bees.  For these four or five critical days, the worker (nurse) bees feed the larva generous servings of royal jelly.  The size and health of the future queen is directly dependent on both the quality and quantity of the royal jelly that the larva receives during this brief and critical time window.

Each larva has a life span of only about four and half days between the time that it hatches from an egg to the time that the surrounding bees seal it and it begins its transformation into a pupa, eventually becoming a queen bee.  Therefore, a conscientious queen producer needs to take as many steps as possible to ensure that each and every queen larva is well cared for during this vital metamorphosis period.  Well-fed and well-nourished larvae result in high quality queen bees.

In order that each larva receive the maximum amount of royal jelly during its brief life, a good queen producer will graft larvae that are young; as close to egg emergence as possible.  Older larvae are already too far into their four-day window to receive the maximum quantity of royal jelly needed during their short lifespan as a larva.  A young grafted larva will receive a full four days of royal jelly feeding before it is sealed, whereas a two day old larva has already missed out on up to two days of royal jelly and has only two days left to be fed before it is sealed.

Once the young larvae are grafted, they are placed into cell building colonies that are packed with healthy and well-fed nurse bees.  Having a strong cell building colony ensures that the larvae will be well-attended and abundantly fed from the time that they are placed into the cell builder cups until the time they are sealed shut.

California Diamondback

One of the most enjoyable parts of working with bees is having the opportunity to work outside within the beauty of nature.  In the semi-rural areas of Southern California, where our apiaries are located, we regularly run across all sorts of animals.  In the course of a typical day, we are almost always greeted by chirping birds – finches, mockingbirds, jays, woodpeckers – and even wild peacocks and turkeys.  Occasionally we meet up with a coyote or two, and sometimes even catch a glimpse of a roadrunner scurrying through the bee yard.

Not as enjoyable, however, is when we encounter rattlesnakes.  You might think that bees and rattlesnakes would keep their distance from one another, and that a beekeeper would not be at much risk of running into rattlesnakes.  Unfortunately, you would be wrong.  Rattlesnakes love burrowing under beehives.  The bees don’t bother them, nor do they bother the bees.  It is a perfect arrangement for the rattlesnake; the beehives provide shade in the summer and naturally warm temperatures at night.  Being cold-blooded, rattlesnakes are pleased to discover that relaxing below a buzzing beehive provides a temperature-controlled canopy year-round.  Not only that, the beehives offer excellent cover from birds of prey and other nuisances . . . such as humans.

Although not an everyday occurrence, several times a year we find ourselves face to face with a rattlesnake.  While harvesting queen bees for sale, and taking equipment back to the shop, we have to pick-up our queen mating nucs off the ground.  When a colony comes off the ground and we discover a coiled rattler underneath, our hearts skip a beat, or two.  That look, with the flat head, diamonds across the back, and a rattle at the end of its tail is unmistakable.  And, just in case there is any mistaking the look, a small shake of the rattle leaves little doubt of what’s at hand!

So far, no one here at Wildflower Meadows has ever been bitten, as each of our beekeepers have learned and practice what we call the beehive “two-step”:  lift the colony, take two steps back.  More often than not, the rattlesnake will move away on its own, far out of the bee yard and into another crawl place.  Other times, we will very carefully relocate the snake with a stick.  We haven’t had to kill one yet, and really don’t want to.  The rattlesnakes, frightful as they may be, are a natural part of our ecosystem, our apiaries, and a big plus to us beekeepers in helping to keep the rodents away.