Tag Archive for: Bee Behavior

The Worker Bee: A Labor Day Tribute to Nature’s Workforce

The phrase “busy as a bee” rings true when considering the remarkable worker bee. These tireless creatures are the backbone of the hive, responsible for its every function. Unlike the queen, whose sole purpose is to reproduce, worker bees are the ultimate team players, prioritizing the collective good above individual glory.

Interestingly, worker bees make up the vast majority of the bee population, often outnumbering the queen and drones by thousands. They are the engine that drives the hive’s success. In fact, during the colder months, when the queen and drones are inactive, the entire colony relies solely on the tireless efforts of the winter bees.

Another fascinating fact is that all worker bees are female. This societal structure is not unique to bees; insects in general tend to be matriarchal, with females playing dominant roles. Even more intriguing is that young worker bees, less than three weeks old, possess ovaries and can lay unfertilized eggs, although these eggs never develop into adult bees.

But what distinguishes a worker bee from the queen? Worker bees are smaller in size, have pollen baskets on their hind legs for collecting pollen, and possess a barbed stinger, unlike the queen’s smooth one. The barbed stinger serves a crucial purpose for the worker bee: it allows her to defend the hive, but at the cost of her own life. The queen, on the other hand, can sting repeatedly without dying.

The average lifespan of a worker bee is six weeks, although they can live longer during the winter months. During this short period, worker bees undertake a variety of tasks, which change depending on their age. Younger bees, known as house bees, focus on internal duties such as cleaning the hive and nurturing the larvae. As they mature, they transition to become field bees, venturing outside to gather pollen and nectar.

Worker bees exemplify the true spirit of Labor Day. They work tirelessly, often performing thankless tasks, yet their contributions are essential to the survival and prosperity of the hive. Just as we celebrate the contributions of human workers on Labor Day, we should also acknowledge the remarkable efforts of these tiny, yet mighty, creatures.

The Curious Case of the Baby Bee

Unlike a bird, which hatches from an egg, or a mammal, which emerges from a womb, a baby bee enters the world through a more unusual portal – a capped honeycomb cell. This sealed chamber becomes its nursery, where it undergoes a metamorphosis from egg to larva to pupa before finally emerging as a fuzzy, wide-eyed adult.

 

A baby honeybee, uses its tiny mandibles to chew its way out of its honeycomb cell, marking its entrance into the busy world of the hive. However, these newborns lack the ability to sting or fly, so they spend their initial days within the safe haven of the hive, slowly developing their skills and strength before joining the bustling activity of the adult bees.

Unlike other animals whose bodies continuously grow and develop throughout their lives, newly hatched honeybees are unique in that they emerge from their honeycomb cells fully formed. Their exoskeletons, the hard outer shells that provide structure and protection, are already fully developed at birth.  These baby bees, also known as callows, are far from the polished, hard-working insects we associate with honey production, however. Their appearance is a stark contrast to the seasoned bees buzzing around them. They often appear dazed and confused, their large eyes seemingly bewildered by the bustling hive. Their bodies, often lighter in color than the adults, are covered in a soft fuzz, giving them an endearingly awkward appearance.

This disoriented phase only lasts for a few precious hours, around 4-5. After that, the callow sheds its fuzzy coat and takes on the sleek, mature look of an adult bee. It joins the workforce, diligently contributing to the hive’s tasks, whether it’s foraging for nectar, tending to the young, or guarding the hive entrance.

The transformation of a baby bee is a testament to the remarkable adaptability and resilience of these tiny creatures. From their humble beginnings in a sealed cell to their vital role within the complex hive society, they offer a fascinating glimpse into the wonders of the natural world.

Deciphering the Language of Pollen Colors

For beekeepers, a captivating sight unfolds within the hive: a vibrant tapestry of pollen pellets, each boasting a distinct color. These colorful balls, diligently carried by returning foragers, tell a fascinating story – a story of the bees’ journey and the blooming flowers they encountered.

Just like a painter’s palette, the colors of pollen reveal the flowers the bees have chosen to visit. In some cases, the connection is readily apparent. When bright yellow pollen pellets arrive amidst a landscape awash with blooming wild mustard, the source is evident.

However, the bee world is not always so straightforward. Mysterious colors can intrigue even the most experienced beekeeper. Pollen, usually known for its yellow and white hues, can also surprise us with vibrant reds, greens, blues, oranges, grays, and even purples.

This diversity is especially noticeable in urban and suburban hives where bees have access to a wider variety of gardens and flowers. Unlike their rural counterparts who may encounter vast fields of the same species, urban bees flit from flower to flower, collecting a kaleidoscope of colors.

The reason for this single-color preference is quite simple. Individual bees, known for their meticulous nature, dedicate themselves to foraging from one type of flower at a time. This ensures efficient pollen collection and prevents the unwanted mixing of pollen from different species, which could compromise the colony’s reproductive success.

But the intrigue doesn’t end there. For the curious beekeeper, pollen colors become a tool for investigation. By carefully observing the incoming pollen and comparing it to the blooming flowers in the surrounding area, one can piece together a map of the bees’ foraging routes. This knowledge can be valuable for understanding the health and diversity of the local ecosystem and ensuring that the bees have access to a variety of nutritious pollen sources.

So, the next time you see a bee returning with a vibrant pollen pellet, remember that it carries a hidden story, waiting to be deciphered. Through the language of color, the bees invite us to embark on a journey of discovery, unveiling the secrets of their world and the beauty of the natural landscape that sustains them.

Why Bees Hang Out: A Summertime Phenomenon

As the summer sun reaches its peak and temperatures climb, beekeepers might notice a curious phenomenon: bees congregating outside the hive entrance, seemingly reluctant to go inside. While this behavior may initially spark alarm, it’s actually a completely normal beekeeping observation and nothing to worry about.

Imagine the hive as a bustling city during a heatwave. With a large population of bees packed together, the air inside can become stifling and uncomfortable. To combat this, bees instinctively seek cooler temperatures outside the hive. It’s their way of staying cool and ensuring the survival of the colony.

Bees are ingenious creatures, and they possess their own unique cooling system. They act like miniature swamp coolers, collecting water and regurgitating it on the underside of the hive lid. By fanning this water vigorously, they create a cool breeze that circulates throughout the hive. However, this process becomes less effective when the hive is overcrowded. By venturing outside, bees create more space for the cool air to flow, ensuring optimal comfort for everyone inside.

On late summer nights or days without a honey flow, bees can be found hanging out outside simply because they have nowhere else to be. When it’s too dark to fly or there’s no nectar to collect, the foragers stay home, contributing to a temporary overcrowding situation.

After a beekeeper harvests a honey super, the bees may find themselves with less space than usual. This can lead to temporary congestion and encourage some bees to hang out outside for a while.  Who knows, maybe bees simply enjoy basking in the warmth of a summer day just like we do!

While this behavior might seem unusual at first, it’s important to remember that bees are highly adaptive creatures with sophisticated instincts. Seeing bees hanging out outside the hive during the summer months is simply a normal part of beekeeping and not a sign of any underlying problem.

So next time you see your bees enjoying the summer sunshine outside their hive, remember they’re just practicing their natural cooling techniques or taking a well-deserved break. Let them be and enjoy the fascinating ways these amazing creatures adapt to their environment.

Which Direction Should Honeybee Hives Face?

In the United States, honeybee hives should ideally face south or southeast. This is because the sun rises in the east and sets in the west, so a hive facing south or southeast will receive the most sunlight throughout the day. This is especially important in the spring and fall, when the days are shorter and the nights are cooler.

The sunlight helps to warm up the hive, which encourages the bees to start foraging earlier in the day. It also helps to keep the hive dry and free of mold and mildew. Additionally, a hive that is facing south or southeast will be less likely to be exposed to strong northerly winds, which can damage the hive and make it difficult for the bees to fly.

Of course, there are other factors to consider when choosing a location for your beehives, such as the availability of food and water sources, the presence of predators and pests, and the local climate. But if you can, it is best to place your hives in a location where they will receive the most sunlight.

It is not absolutely critical that a hive face the south or east.  Here at Wildflower Meadows, we have some apiaries that are excellent for our bees, but due to their layout, don’t accommodate a southern exposure for all of the colonies.  While this is not ideal, the bees manage anyway.

Here are some additional tips for choosing a location for your beehives:

  • Place the hives in a level spot that is well-drained and protected from flooding.
  • Avoid placing the hives in direct sunlight all day long. Some shade in the afternoon is ideal.
  • Place the hives away from high traffic areas and areas where people and pets congregate.
  • Make sure the hives are accessible for inspection and maintenance.

If you are unsure where to place your beehives, it is a good idea to consult with a local beekeeper or beekeeping association. They can help you to choose a location that is best for your bees and your needs.

How Long Can a Honeybee Colony Live When a Queen Dies?

The honeybee hive is a complex and intricate society, with each member playing a vital role in its survival. At the heart of this society lies the queen bee, the sole female capable of reproduction. Her presence is essential for the colony’s continued existence, as she lays the eggs that will give rise to the next generation of bees.

When a queen bee dies, the hive enters a state of turmoil. The queen’s pheromones, which regulate the colony’s behavior, begin to fade, and the worker bees become agitated and confused. This disruption can have a devastating impact on the hive’s ability to function effectively.

In response to the queen’s demise, the worker bees initiate the emergency queen rearing process. They select a few worker bee larvae, typically between five and eight days old, and begin feeding them royal jelly, a special nutrient-rich food that is typically reserved for the queen. This special diet stimulates the larvae’s development and transforms them into potential queens.

The worker bees construct special queen cells, which are elongated and hang vertically from the honeycomb. Each potential queen develops within her own queen cell. Once the queens reach maturity, they emerge from their cells and engage in a series of “virgin flights” to mate with male drones.

The success of the emergency queen rearing process is crucial for the hive’s survival. If the new queen fails to mate or if she is killed by the other queens, the colony will eventually die out. This is because worker bees are sterile and cannot lay fertilized eggs, which are necessary for the production of female worker bees.

In some cases, the emergency queen rearing process may fail, and the colony may become queenless. In these situations, beekeeper intervention may be necessary to save the hive. Beekeepers can introduce a new mated queen from a reputable source, such as Wildflower Meadows, or they can combine the queenless colony with another colony that already has a queen.

Without a queen, the colony’s population will gradually decline as older bees die off and there are no new replacements. The colony may also become more susceptible to diseases and pests. In some cases, the worker bees may start to lay their own unfertilized eggs, which will only produce male drones. This will further hasten the colony’s demise.  Usually a colony can survive no longer than a few months without a queen.

The loss of a queen bee is a critical event for a honeybee hive. If the hive is able to successfully rear a new queen, it can survive and continue to thrive. However, if the queen rearing process fails or if the colony remains queenless for too long, the hive will eventually perish. Beekeeper intervention can play a vital role in helping queenless colonies survive, but ultimately, the fate of a hive without a queen is a delicate balance between chance and intervention.

Unveiling the Mystery of Honeybee Queen Piping: A Symphony of Communication

The intricate world of the honeybee holds many secrets, and among them lies the fascinating phenomenon of queen piping. This high-pitched sound, produced by both virgin and mated queens, plays a crucial role in the colony’s social dynamics and queen succession.

A Cry for Attention:

Fully developed virgin queens engage in a series of vibratory signals known as “quacking” while still inside their queen cells. This acoustic communication serves as a declaration of their existence and readiness to compete for the coveted role of the colony’s queen. Once they emerge, these queens transition to emitting “tooting” sounds, continuing their vocal pronouncements to the colony.

Mated queens, though not as vocal, may also be heard piping briefly after being introduced to a new hive. This act is believed to be a form of introduction, informing the worker bees of their arrival and establishing their claim as the colony’s rightful ruler.

Queenly Battle Cry or Call to the Colony?

The exact purpose of queen piping remains a subject of debate. Traditionally, it was interpreted as a battle cry, a challenge issued to other queens in the hive, announcing their presence and readiness to fight for dominance.

However, recent research suggests a more nuanced understanding. Scientists now believe that piping is primarily a signal directed at the worker bees rather than a declaration directed at rival queens. The queen uses this vocalization to announce her presence, assert her fitness, and ultimately sway the workers to support her reign.

A Queenly Symphony in the Wildflower Meadows Shipping Room:

Beekeepers frequently encounter piping when dealing with multiple queens at once. During queen banking, where numerous queens are housed together in a confined space, the piping becomes a noticeable and rather loud symphony. Here at Wildflower Meadows, as we prepare orders, the queens in the shipping room become aware of each other’s presence, leading to a chorus of piping that intensifies with their number.

Even during transportation, the piping persists. As the queens journey to UPS, their collective calls fill the air. However, once separated during the shipping process, the piping ceases, signifying the end of their temporary communication network.

A Glimpse into the Queen’s Mind:

While the precise meaning of queen piping remains under investigation, it undoubtedly plays a crucial role in the queen’s communication strategies. Whether it’s a declaration of dominance or a call for worker support, this vocal behavior offers a valuable window into the complex social dynamics of the honeybee hive. As our understanding of this phenomenon evolves, we gain a deeper appreciation for the intricate communication systems that underpin the success of these remarkable creatures.

Valentine’s Day in the Drone Congregation Area: Where Honeybee Queens Find Love in the Sky

High above the honeybee hive, amidst the gentle sway of trees and the chirping of birds, lies a hidden realm known as the drone congregation area (DCA). This invisible airspace, about 100 meters wide and 15-30 meters above the ground, is a celestial love nest where virgin honeybee queens ascend to meet their destined mates.

Imagine a scene from a bee-themed rom-com. Thousands of male drones, driven by pheromones and primal instinct, gather in a swirling, buzzing cloud, eagerly awaiting their queen. The air hums with anticipation, a silent symphony of beating wings and hopeful drone hearts.

But why this elaborate aerial rendezvous? Why not mate within the cozy confines of the hive?

The answer lies in the unique biology of honeybee reproduction. A queen mates only once, and she does it with multiple drones – usually 10-20 – during a single flight. This “polyandry” ensures genetic diversity in her offspring, strengthening the colony’s resistance to diseases and environmental challenges.

So, how does this bee ballet unfold?

The Queen’s Call:

  • As a young queen emerges from the hive, her body releases a potent mix of pheromones, invisible chemical signals that announce her availability. These “queen substance” pheromones act like an irresistible perfume, beckoning drones from nearby hives.

The Drone Rendezvous:

  • Drones, equipped with special receptors for these pheromones, take flight, following the invisible scent trail like love-struck missiles. They gather in the DCA, forming a dense, swirling cloud, their excitement palpable in the buzzing symphony.

The Celestial Mating:

  • The queen, guided by the drone density, ascends into the DCA. As she flies, she releases even more pheromones, intensifying the drones’ ardor. The cloud condenses around her, forming a mesmerizing “drone comet” trailing behind her like a celestial fan.
  • Within this intimate dance, the most vigorous drones manage to mate with the queen. The mating process is swift and fatal for the drone. His endophallus, a reproductive organ, detaches inside the queen, providing her with a lifetime supply of sperm. As he falls from the sky, the remaining drones continue their pursuit, hoping for their chance at glory.

The Return of the Queen:

  • After several successful matings, the queen, now carrying the hopes of a colony, returns to the hive. She stores the collected sperm in a special organ called the spermatheca, using it throughout her life to fertilize her eggs.

The drone congregation area, though unseen by most, plays a vital role in the honeybee’s survival. It’s a testament to the intricate dance of nature, where love takes flight not in a candlelit corner, but in the vast expanse of the sky, ensuring the future of a buzzing kingdom.

How Far do Honeybees Fly?

The distance that honeybees fly depends on a number of factors, including the availability of food, the weather conditions, and the age and fitness of the bee.

Honeybees fly farther for nectar than for pollen or water. The average distance that a honey bee flies to collect nectar is 2 to 3 miles, while the average distance that they fly to collect pollen is 1 to 2 miles. Honeybees fly even shorter distances to collect water, typically flying less than 1 mile.

There are a few reasons why honeybees fly farther for nectar than for pollen or water. First, nectar is the main source of food for honey bees. They need nectar to produce honey and to feed the larvae in the hive. Pollen is also an important food source for honey bees, but it is not as essential as nectar. Honey bees can survive for several days without pollen, but they will only survive for a few hours without nectar.

Second, nectar is more concentrated than pollen or water. This means that honey bees can carry more nectar in a single trip than they can pollen or water. For example, a honey bee can carry up to 70 milligrams of nectar in a single trip, while it can only carry up to 25 milligrams of pollen or 40 milligrams of water.

Finally, nectar is more available than pollen or water. Pollen is only available during certain times of the year, and it is not always available in large quantities. Water is also not always available, especially in dry climates. Nectar, on the other hand, is available year-round and in most climates.

Weather can also affect the distances that bees will fly.  Bees fly shorter distances when the weather is inclimate.  Honeybees are cold-blooded insects, so their body temperature is regulated by the temperature of their surroundings. In cold weather, their muscles become stiff and their wings become less efficient, making it difficult for them to fly. Rain can also weigh them down and make it harder for them to keep their balance. Additionally, rain can wash away the nectar and pollen that honey bees need to collect. Wind can also blow honey bees off course and make it harder for them to control their flight. Finally, in bad weather, the availability of pollen may be lower because the weather conditions may make it difficult for flowers to open and release their pollen.

The age of the bee often factors in to how far a bee will fly.  Young honeybees fly longer distances than older honeybees for a few reasons. First, young honeybees are more energetic and have more stamina than older honeybees. This is because they are still young and have not yet used up their energy reserves.  Additionally, young honeybees are more likely to be inexperienced and eager to explore, which can lead them to fly longer distances in search of food.

Queenlessness

For most of its life, a honeybee colony has an active and well-accepted queen bee, which the colony rallies around. The queen herself, with her unique pheromone signature, is a key component of binding a colony together.

There are times, however, when a colony finds itself without a queen bee. This is known as queenlessness.

A honeybee colony can lose a queen for several reasons. Like any living creature, a queen honeybee is vulnerable to sickness, injury, old age, etc. But queen honeybees, being insects, are also vulnerable to the peculiarities of the insect world. Sometimes a colony intentionally kills its queen due to a disruption in pheromone signatures or some other environmental stress. Sometimes another virgin queen will appear—perhaps the colony raised another queen bee. An eventual fight to the death is almost guaranteed if a virgin queen emerges.

From both the beehive’s and beekeeper’s perspectives, queenlessness is precarious. The colony’s days are numbered if it cannot get a queen going. Time is of the essence. The longer a colony remains queenless, the greater its odds of perishing become.

When a colony suddenly goes queenless, it has only four or five days to raise a new queen. A queenless colony needs young worker bee larvae to raise a new queen. Once a queen is lost, there remains only a four- or five-day period in which young worker larvae will be present in the hive. After this period, all the larvae will be too mature for queen-raising.

A honeybee colony detects queenlessness when the queen’s pheromone disappears. This happens amazingly quickly. It usually takes a colony only about four to five hours to discover that no pheromone is being shared and that the colony is now without a queen. This is when the colony begins an agitated buzzing sound known as a queenless roar. Likely, this roar is an additional and urgent signal that queen-rearing must start, and it must begin immediately.

An experienced beekeeper can use this telltale roar (or its absence) as an essential tool when conducting a hive inspection. Another telltale sign of queenlessness is the disorganization of the bees. The bees have little to rally around in a colony with no queen and, eventually, no larvae. The colony has no larvae to feed, so the nurse bees wander around aimlessly.

As part of any bee inspection, a beekeeper should always be on the lookout for queenlessness and its telltale signs. Here at Wildflower Meadows, our beekeepers know that anytime a colony is roaring, or the bees appear disorganized, a further inspection is in order.