Raising Your Own Queen Bees

Here at Wildflower Meadows, we take pride in being a reliable source for quality queen bees for our many loyal customers – both repeat and new. Raising queen bees is more than just our job; and we are pleased when our customers can enjoy the fruits of our hard work and expertise.

Believe it or not, we are also equally happy when a beekeeper takes it upon him or herself to learn the science and art of queen rearing.   At that point we share the joy of a beekeeper, who in learning how to raise queen bees, joins a select group of beekeepers who not only manage honeybees but are self-sufficient in meeting their own queen needs.  Queen rearing is advanced beekeeping.  There is a bit of a learning curve, but the benefits of knowing how to raise one’s own queens are huge.

The first and perhaps most valuable benefit is self-sufficiency.  Imagine the notion that you can have your own source of queen bees more or less whenever needed, on-demand.  This means no waiting during the peak season, no scheduling with your queen provider, and no placing orders months in advance. You’re the boss, and you raise your queens when you need them and when the timing is right for you and your hive.

Plus, you’ll likely save money – perhaps a lot of money.  The more queens that you raise, the lower your cost per queen becomes.  Sure, you need to purchase breeder queens and some basic supplies upfront, but once your system is in place, you can literally raise thousands of high-quality queen bees – or as many as you need.  After your initial outlay, the cost of producing every incremental queen is minimal, besides some basic ongoing supplies. The more queens you produce, the more money you save.

If you start with a Wildflower Meadows instrumentally inseminated breeder queen, your stock will carry the optimum Wildflower Meadows genetics that we are known for.  The difference is now you’re in control of both the timing and scale of your queen production.

Raising queens gives you the direct, satisfying experience of witnessing the joy and magic of a queen’s transformation first-hand: from larva to pupa, to virgin queen, and finally to a quality mated queen that you can truly call your own.

Overwintering Honeybees In A Single Deep Super

In the height of winter, beehives shut down to varying degrees.  In Southern California, however, many of our beehives remain active, though to a much lesser extent than during the spring or summer months.  During winter, the bees wait for the relatively mild weather, which reliably comes along from time to time.  When a pleasant day does arrive, the bees can be found out on the go, foraging on the many winter blossoms such as jade and eucalyptus.

Most North American beekeepers overwinter their colonies in a “double deep” configuration, meaning that the colony heads into winter with two deep supers.  The colder and longer the winter, the more stores of honey are needed for the colony to ensure survival.  In the northern parts of the United States, most beekeepers like to have the top box solidly filled with honey to minimize the risk of starvation.  This top box, heavy with honey, also provides a layer of insulation from the cold.

Here in Southern California, however, the wintering conditions are much milder.  Because our bees have the year-round opportunity to forage, and we have the availability to feed our bees, if necessary, during winter, we often prefer to overwinter our colonies in a “single deep” configuration – compressing the bees into one deep super.  California bees seem to overwinter well in a single hive body.  This tight configuration minimizes empty air space and condensation, allowing the bees to control their brood temperatures when stormy weather and cooler nights prevail.  In a single box, they keep their cluster tight, and have plenty of population packed around the winter brood nest.  This tight space also keeps the bees relatively compressed around the entrance, affording them better protection against robber bees and other pests.

As humans, we might find such crowded conditions completely unacceptable.  As insects, however, honeybees generally have no problem with these slightly crowded conditions – especially in winter.  When the weather is cold, bees actually seem to enjoy the company of their sisters and thrive in their tight living spaces!

Honeybees And Bears

Of all the natural predators of honeybees, such as birds, skunks, raccoons, and badgers, probably none are as fearsome and notorious to bees and beekeepers alike, as bears.  Bears love to eat bee larva, bee brood, and to a lesser extent, honey.  With this appetite for bee products, they seem to be more interested in beehives than even the most dedicated beekeeper!  It is no coincidence that many honey containers are shaped like bears.  Keep in mind that even Winnie the Pooh loves “hunny.”

The problem, for both the bees and their beekeepers, is that when bears visit an apiary, the damage they cause is almost always devastating.  Bears do not carefully harvest honey like we beekeepers do.  No, they pick up entire colonies and strew them about the ground; destroying the equipment and creating havoc in the apiary.  If you have ever visited an apiary after a bear visit, your first impression will be is that it looks like a war zone, with no survivors.  Damaged and destroyed equipment will be strewn everywhere.

You would think that a colony’s guard bees would be able to scare a bear away with their stings, but the bears’ fur coats are so thick that the bees’ stingers can not really penetrate well enough to get to a bear’s skin.  The only vulnerable spot on a bear is its face.  This is perhaps why bees have evolved over the years to focus on stinging the head and face of an intruder.  Most beekeepers know that angry bees typically aim for the head.  This is likely an evolutionary and instinctive response against bear attacks.  It is also why the beekeeping veil is the most important piece of personal protection for a beekeeper.

The best and probably only practical defense against bears is to encircle vulnerable apiaries with electric fencing.  As a beekeeper, this is an expensive solution, however, much less expensive than losing an entire apiary of bees and equipment with every bear attack.  Fortunately, most beekeeping supply companies sell these fences, many of which are solar powered.

If only bears could realize how dependent they are on honeybees, just like the rest of us, they might show a little more compassion to the colonies that they attack.  It is estimated that about 15 percent of a bear’s diet consists of berries, all of which require pollination, much of which is done by honeybees.  Many researchers suspect that bears are already being adversely affected by the decline in wild bee populations.  Fewer pollinators mean fewer berries, which in turn affects the bears’ nutrition and foraging behavior.

Pollen: The Bees’ Thanksgiving Day Meal

As we approach Thanksgiving in the United States, many of us look forward to not only time off from work and time spent with family, but to the meal itself.  A proper Thanksgiving meal is an abundant feast.  Let’s face it: no one ever leaves a Thanksgiving table feeling hungry.

It’s a shame that our bees cannot celebrate with us.  During Thanksgiving, most bees throughout the United States have basically little food.  The temperatures are cold; the days are short, and practically no flowers are blossoming.  With so few flowers in bloom, there is little or no pollen available for the bees.

Bees thrive on pollen.  Of all the foods that bees consume, nothing matches the nutritious benefit of real, actual pollen.  Pollen is the bees’ true Thanksgiving meal.  It is pollen that drives bee colonies to expand their population, raise drones and generally get healthy in the spring.  Over the years, we’ve heard many of our larger commercial customers say that “pollen solves everything.”  It’s true.  When flowers are blooming and pollen is abundant, bees grow well-nourished and healthy.

This is why bees can easily double their populations in just a few weeks of almond pollination, but rarely grow in similar size during months of alfalfa pollination.  Why?  Almond blossoms are loaded with nutritious pollen; whereas alfalfa blossoms are not.

For years, beekeepers have been trying to come up with various pollen substitutes to mimic the beneficial effects of natural pollen.  While the quality of these pollen substitutes continues to improve over time, all of them still fall short when compared to the effects of actual, real pollen.  Imagine trying to substitute a full Thanksgiving Day meal with a few protein bars, and you get the idea.  While we can try to substitute various natural foods with our own creations, in the end little can compare with a full, hearty and genuine Thanksgiving meal.   And, it is the same for the bees.  Happy Thanksgiving!

Breeder Queens vs. Mated Queens: What’s the Difference?

Beekeepers looking to purchase a queen bee sometimes ask us – what makes a breeder queen unique, and why does a breeder queen often cost nearly ten times the amount of a regular mated queen?

A breeder queen is the cornerstone of a successful bee breeding program. While a breeder queen could certainly take part in regular honey production and beekeeping activities, such as pollination – and most likely would be a superstar in such endeavors – this is not the breeder queen’s purpose. A breeder queen is the carrier of the finest, specially selected genetics, almost always instrumentally inseminated – she is a prized specimen, too precious for ordinary beekeeping.

The vast majority of queen honeybees sold by most queen producers (including Wildflower Meadows) are commonly known as mated queen bees, sometimes also called laying queen bees.  These queen honeybees have been naturally open mated.  While these mated queens are generally of high quality themselves, they are not instrumentally inseminated, and therefore always contain a percentage of unknown genetics.

Unknown genetics may present risks within a breeding program.  An open mated queen will mate with approximately 15 drone honeybees, all of which may potentially be from unknown origins.  If a regular open mated queen is used for breeding, she is guaranteed to pass along hybrid and unknown genetics to her daughter queens, creating variability in her offspring.  With up to 15 unknown drones (fathers) in her genetic profile, there is no guarantee of uniformity and optimum genetics in her offspring.  The open mated queen’s daughters will almost certainly be hybrids and may be inconsistent in performance and quality, which is not ideal for breeding.

A breeder queen has been specifically bred, selected, and inseminated for genetic excellence – which is why breeder queens are more valuable for breeding.  The advantage of a breeder queen versus an open-mated queen is that a breeder features pre-selected F1 maternal AND F1 paternal lines that are 100% known and carefully identified. There are no unknowns with instrumental insemination – everything has been optimized for quality and uniformity.

Optimal genetics are vital to the growth of strong colonies. A beekeeper who wants to breed should start with carefully selected, pure genetic lines that are of known origin on both the maternal and paternal sides. This is the advantage of instrumental insemination and is what makes the breeder queen so unique and prized among honeybee breeders.

Queen Cups vs. Queen Cells

Honeybees are natural comb builders and always seem to be working on some sort of construction or renovation within their hive.  When bees are working on frames of honeycomb, they construct two sizes of honeycomb cells: worker-sized (or regular) honeycomb, or drone-sized (larger) honeycomb. These two sizes accommodate the size difference between worker bees and drone bees.  Drone honeybees are larger than workers, and can’t really fit into a regular honeycomb cell.

Most of the honeycomb that bees build is regular size, which the bees utilize for raising worker bees.  This makes sense since the vast majority of bees in any beehive consist of regular worker honeybees.  A smaller percentage of honeycomb, however, is larger sized, which the hive uses to raise drone honeybees.  In a healthy beehive, there are always more worker bees than drone bees so it is understandable that there would be more worker-sized comb cells than drone-sized comb cells.

What about the queen though?

Amid all this comb construction, the bees will occasionally decide to build a placeholder for a future queen cell – this is a queen cup.  A queen cup looks like an upside-down teacup.  It is more or less the foundation of a queen cell, without actually being a queen cell.  It is as if the bees have done the math – about 90% of a hive consists of worker bees, about 10% consists of drones, and there is a tiny, minuscule less-than-1% percent consisting of the one and only queen.  As a percentage basis, queens are a negligible percent of the hive’s population.  Therefore, the amount of comb dedicated to raising queens needs to be equally negligible.  The queen cup is a tiny acknowledgment that once in a while a beehive needs to raise a new queen.

Most of the time queen cups are unused and can linger around for years at a time.  If a beekeeper discovers a queen cup in a colony it is no cause for concern, unlike finding a queen cell.  The queen cup is merely a placeholder, for potential use at a later date if the hive decides for whatever reason to raise a new queen.  Having the queen cups in place makes building future queen cells just a little bit easier for the bees.

However, when a beekeeper discovers an actual live queen cell inside a colony, it is almost always a cause for concern.  Honeybees do not build queen cells unless they have an immediate and specific reason – unlike queen cups which bees will build just for their own sake. If honeybees are constructing queen cells it is likely due to one of several reasons.  From the beekeeper’s perspective, none of these reasons are good.

A few of the most common reasons bees that bees construct queen cells include:

  1. The hive is preparing to swarm
  2. The colony is without a queen and is in the process of raising an emergency replacement.
  3. The colony has decided that the current queen is of poor quality and needs to be replaced.

Chalkbrood

Of all the diseases and pathogens that can affect a honeybee colony – and there are many – chalkbrood is one of the less lethal.  Nevertheless, chalkbrood is still considered a common and somewhat detrimental disease of honeybee colonies.

Chalkbrood is a fungal infection that affects bee larvae, most commonly worker bee larva.  The infected larvae turn a chalky white color (hence the name) and become hard.  Sometimes, in the advanced stages, infected brood will turn a dark color, almost black.  One of the sure ways to tell if a colony is suffering from chalkbrood is to find the chalky dead larvae laying outside the entrance of a colony.  Worker bees, especially in colonies that have hygienic behavioral traits, do not tolerate dead larva well, and remove them as soon as they are able.  If a beekeeper finds a pile of chalky mummified larvae in the front of a colony, then it is almost a sure sign that chalkbrood is present.

Chalkbrood is one of those infections that can often be seen as a symptom, rather than a cause, of overall colony weakness.  In other words, weak and stressed out colonies are more susceptible to contract chalkbrood than healthy colonies, much in the same way that weakened and stressed people are more susceptible to catching colds.  Also, some strains of bees are simply more genetically susceptible to chalkbrood than others.

If chalkbrood is found in the early spring, it can be considered somewhat normal, a sign that the colony is struggling with handling a normal rapid ramp up of brood production at the same time that temperatures are still cold, and the colony hive population levels are low.  If this is the case, the chalkbrood typically clears itself up once the hive populations grow and there are more young bees available to tend to the brood and keep it warm.

If, on the other hand, chalkbrood is present during the summer or during a time when a colony should otherwise be healthy, a conscientious beekeeper should consider that there might possibly be something wrong with the colony and that it needs intervention.

Often the best cure for chalkbrood is giving the colony some attention and TLC.  This means thoroughly inspecting a colony to try and figure out what is causing it to be unhealthy.  Sometimes the solution involves providing the colony better nutrition, inspecting and treating for varroa mites and other pathogens, and perhaps replacing heavily infected frames with clean ones.  A conscientious beekeeper can also assist a colony by cleaning up any chalkbrood mummies that are clogging the entrance way or are laying on the bottom board of a bee colony.

Sometimes, simply requeening a colony solves the problem.  Fortunately, here at Wildflower Meadows, although our bees are not specifically selected for chalkbrood resistance, our overall grading process and selection for survivor stock tends to promote colonies that do not often succumb to chalkbrood.  Often, the gift of a young, healthy and vigorous queen with a good pedigree is all that a colony needs to get itself back on track.

Absconding Bees

The fall season of beekeeping is arguably the worst time of year to be a beekeeper.  All of the typical adversities of beekeeping are intensified in the fall:  Lack of forage, drought, heat and fire risk (especially in the western states), varroa mites, food shortages, yellow jackets, etc.  With all of these adverse conditions, sometimes it seems like it’s a miracle that the bees can survive at all at this time of the year.  At Wildflower Meadows, we typically experience our largest colony losses in the autumn months of September and October.  It is not surprising, as the bees have so much conspiring against them in the fall.

Because of this, once our queen production comes to an end in September, our beekeepers rapidly switch gears and aggressively focus on helping our bees survive these meager months – especially the more vulnerable smaller colonies and mating nucs that were just part of our recent queen production.

We feed our bees aggressively, and protect them to the best of our ability against these harsh elements.  We feed pollen patties and other nutritional supplements; we expand the fire breaks around each apiary; we put out ant baits and yellow jacket baits to keep these aggressive pests (somewhat) under control; we make sure that every yard has continued access to reliable fresh water; and we sometimes place additional lids on top of our colonies for additional shade and heat protection.

In spite of all of these efforts, sometimes it is simply not enough.  When a colony of bees becomes overly stressed for any or all of the above reasons, it may get to the point where the bees themselves decide “enough is enough.”  They’ve had it, and they want out.   And so, they leave . . .

Sometimes in the fall we find that there is an uptick in “swarming.”  Our beekeepers find what appear to be giant swarms of bees hanging around the edge of our apiaries.  Other giant swarms seem to arrive out of nowhere.   These swarms are unusual, as that unlike spring swarms, they often seem reluctant to want to settle into hive bodies.  Of course, these fall swarms are not like the standard spring swarms; they are actually entire colonies of bees that are on the run.  And, of course they don’t want to go back into boxes.  They just escaped one, and the conditions were terrible!

In the beekeeping world, this is called absconding.  Absconding almost always takes place in the fall.  Sadly, these absconding bees have almost no chance of surviving the winter.  Like desperate refugees leaving a war zone with few options, they have scarce resources and limited realistic possibilities for survival.  The best they can hope for is that a conscientious beekeeper can rescue them, give them a new and safe home, feed and treat them well, and offer them a fighting chance to survive into the next season.

Personal Hygiene And Honeybees

At the risk of offending, it’s time to get honest.  As crazy as this may sound, as a beekeeper, you should consider your hygiene around your bees.  The bees themselves value hygiene and are very sensitive to odors.  That is why a conscientious beekeeper does the same.

If you approach your colonies with strong body odors, strong breath, or strong perfumes, you will often pay the price with angry bees.  Bees do not appreciate anything that makes you smell like a wild animal, or alternatively, excessively perfumed and unnatural.  Strong odors typically cause honeybees to behave more aggressively.  They make you more conspicuous and seem like more of a threat.  At times, here at Wildflower Meadows, we have noticed this pattern where a clean, hygienic employee can go a whole day without a single sting, while his or her partner with a messy bee suit and poor hygiene is harassed by the very same bees, all along while doing the same work and working right next to the clean employee!

This brings up an important point about bee suits.  They need to be washed and kept clean.  Especially if you were stung on a previous bee inspection, as your bee suit will retain the pheromone of the last sting or stings.  It is specifically that particular alarm pheromone that is the worst possible odor to have when approaching a bee colony.  It alerts the guard bees that you have already been stung at least once, and are therefore are likely a threat.  The venom odor, which you may not be able to smell, but that bees certainly can, is not a good way to win your bees’ favor with you!

Another point to consider is that leather watch bands can also be a problem around the bees.  Besides the fact that leather has the odor of an animal, a dark color can also aggravate bees, especially when it is moving rapidly back and forth in front of your bees’ eyes.  Honeybees don’t care about the time and don’t see a watch; what they do see is a piece of dark animal skin flashing in front of them.  What’s worse, is that if the watch band gets stung, then the pheromone will be embedded in the watch band, making it even more disturbing to the hive.

One of the golden rules of beekeeping is that when working with a hive, you want to approach the bees in a calm and respectful manner.  In many ways, when you are working with a colony of bees, you become their guest, or perhaps even an extension of their very collective – their connection to the human world.  You are their caretaker and become a part of the hive.  Considering that the bees place such a high importance on odors and pheromones – much more than we do – it is in your best interest that you show the bees this respect and do the same.  Your bees will be more likely to welcome you into their world with open wings!

The Push-In Queen Cage

Most beekeepers are familiar with the most commonly used standard queen honey bee cages, such as the three-hole wooden cage, the California Mini Cage, and the JZ-BZ plastic queen cage (the latter two of which are used here at Wildflower Meadows).  However, a less frequently used queen cage is called the push-in cage.  The difference between a push-in queen cage and a standard queen cage is that unlike a standard cage, a push-in cage allows the queen to begin to lay eggs while she is still in the cage, before she is released.  The more commonly used cages do not.

All of the more commonly used queen cages follow the same principle of confining the queen in a safe container while the bees in the colony become accustomed to her pheromone.  During this introduction period, the bees in the colony work their way through a candy tube of sugar, which delays the release of the queen by anywhere from one to three days, depending on the strength of the colony.

The riskiest part of this process, and the part of the process where the new queen can be lost, occurs just when the queen is released from hew cage.  At the point of release, although the queen may be generally accepted by the colony, she is still somewhat vulnerable because she has not yet laid any eggs.  Most honeybee colonies are generally suspicious of a new queen that is not laying any eggs, regardless of how excellent she may otherwise be.  (This is why best beekeeping practices advise not to disturb a colony during this sensitive period of queen introduction.  The combination of the disturbance added to the fact that a new queen might not yet be laying eggs, can cause a colony to turn on the new queen and possibly kill her.)

One of the ways around this problem is to utilize a push-in cage.  A push-in cage provides the new queen adequate protection during her introduction, while at the same time allowing her to start laying eggs in a safe, but restricted area of the colony.

To introduce a new queen using a push-in cage, the beekeeper must look for a section of comb that contains some open cells for the new queen to lay in, along with some emerging brood, and ideally, some nectar or honey.  The push-in cage is placed over this section, and the new queen is placed inside the cage, along with around three to six young attendant bees.  (The benefit of placing the push-in cage over emerging brood is that the new baby bees that hatch under the cage will provide additional support for the new queen.  And, of course, the baby bees will accept the new queen, since they know no other.)

Once the new queen begins laying eggs under the push-in cage – usually within one to three days – she is free to be released.  At this point, the colony has not only become accustomed to the queen’s pheromone, but the bees also recognize the queen as an actual laying queen who is already performing.  We like to say that the queen is “gold” at that point.

Although using a push-in queen cage takes a bit of effort, it is a very safe and reliable method of queen introduction.  It is why here at Wildflower Meadows, we always introduce our precious and champion breeder queens in this manner.  It is the tried and true safest way.

It’s easy to construct a push in cage of your own using standard hardware cloth.  Or, alternatively, many beekeeping supply companies, such as Mann Lake Ltd., sell ready-made push in queen cages.