Queen Cups vs. Queen Cells

Honeybees are natural comb builders and always seem to be working on some sort of construction or renovation within their hive.  When bees are working on frames of honeycomb, they construct two sizes of honeycomb cells: worker-sized (or regular) honeycomb, or drone-sized (larger) honeycomb. These two sizes accommodate the size difference between worker bees and drone bees.  Drone honeybees are larger than workers, and can’t really fit into a regular honeycomb cell.

Most of the honeycomb that bees build is regular size, which the bees utilize for raising worker bees.  This makes sense since the vast majority of bees in any beehive consist of regular worker honeybees.  A smaller percentage of honeycomb, however, is larger sized, which the hive uses to raise drone honeybees.  In a healthy beehive, there are always more worker bees than drone bees so it is understandable that there would be more worker-sized comb cells than drone-sized comb cells.

What about the queen though?

Amid all this comb construction, the bees will occasionally decide to build a placeholder for a future queen cell – this is a queen cup.  A queen cup looks like an upside-down teacup.  It is more or less the foundation of a queen cell, without actually being a queen cell.  It is as if the bees have done the math – about 90% of a hive consists of worker bees, about 10% consists of drones, and there is a tiny, minuscule less-than-1% percent consisting of the one and only queen.  As a percentage basis, queens are a negligible percent of the hive’s population.  Therefore, the amount of comb dedicated to raising queens needs to be equally negligible.  The queen cup is a tiny acknowledgment that once in a while a beehive needs to raise a new queen.

Most of the time queen cups are unused and can linger around for years at a time.  If a beekeeper discovers a queen cup in a colony it is no cause for concern, unlike finding a queen cell.  The queen cup is merely a placeholder, for potential use at a later date if the hive decides for whatever reason to raise a new queen.  Having the queen cups in place makes building future queen cells just a little bit easier for the bees.

However, when a beekeeper discovers an actual live queen cell inside a colony, it is almost always a cause for concern.  Honeybees do not build queen cells unless they have an immediate and specific reason – unlike queen cups which bees will build just for their own sake. If honeybees are constructing queen cells it is likely due to one of several reasons.  From the beekeeper’s perspective, none of these reasons are good.

A few of the most common reasons bees that bees construct queen cells include:

  1. The hive is preparing to swarm
  2. The colony is without a queen and is in the process of raising an emergency replacement.
  3. The colony has decided that the current queen is of poor quality and needs to be replaced.

Chalkbrood

Of all the diseases and pathogens that can affect a honeybee colony – and there are many – chalkbrood is one of the less lethal.  Nevertheless, chalkbrood is still considered a common and somewhat detrimental disease of honeybee colonies.

Chalkbrood is a fungal infection that affects bee larvae, most commonly worker bee larva.  The infected larvae turn a chalky white color (hence the name) and become hard.  Sometimes, in the advanced stages, infected brood will turn a dark color, almost black.  One of the sure ways to tell if a colony is suffering from chalkbrood is to find the chalky dead larvae laying outside the entrance of a colony.  Worker bees, especially in colonies that have hygienic behavioral traits, do not tolerate dead larva well, and remove them as soon as they are able.  If a beekeeper finds a pile of chalky mummified larvae in the front of a colony, then it is almost a sure sign that chalkbrood is present.

Chalkbrood is one of those infections that can often be seen as a symptom, rather than a cause, of overall colony weakness.  In other words, weak and stressed out colonies are more susceptible to contract chalkbrood than healthy colonies, much in the same way that weakened and stressed people are more susceptible to catching colds.  Also, some strains of bees are simply more genetically susceptible to chalkbrood than others.

If chalkbrood is found in the early spring, it can be considered somewhat normal, a sign that the colony is struggling with handling a normal rapid ramp up of brood production at the same time that temperatures are still cold, and the colony hive population levels are low.  If this is the case, the chalkbrood typically clears itself up once the hive populations grow and there are more young bees available to tend to the brood and keep it warm.

If, on the other hand, chalkbrood is present during the summer or during a time when a colony should otherwise be healthy, a conscientious beekeeper should consider that there might possibly be something wrong with the colony and that it needs intervention.

Often the best cure for chalkbrood is giving the colony some attention and TLC.  This means thoroughly inspecting a colony to try and figure out what is causing it to be unhealthy.  Sometimes the solution involves providing the colony better nutrition, inspecting and treating for varroa mites and other pathogens, and perhaps replacing heavily infected frames with clean ones.  A conscientious beekeeper can also assist a colony by cleaning up any chalkbrood mummies that are clogging the entrance way or are laying on the bottom board of a bee colony.

Sometimes, simply requeening a colony solves the problem.  Fortunately, here at Wildflower Meadows, although our bees are not specifically selected for chalkbrood resistance, our overall grading process and selection for survivor stock tends to promote colonies that do not often succumb to chalkbrood.  Often, the gift of a young, healthy and vigorous queen with a good pedigree is all that a colony needs to get itself back on track.

Absconding Bees

The fall season of beekeeping is arguably the worst time of year to be a beekeeper.  All of the typical adversities of beekeeping are intensified in the fall:  Lack of forage, drought, heat and fire risk (especially in the western states), varroa mites, food shortages, yellow jackets, etc.  With all of these adverse conditions, sometimes it seems like it’s a miracle that the bees can survive at all at this time of the year.  At Wildflower Meadows, we typically experience our largest colony losses in the autumn months of September and October.  It is not surprising, as the bees have so much conspiring against them in the fall.

Because of this, once our queen production comes to an end in September, our beekeepers rapidly switch gears and aggressively focus on helping our bees survive these meager months – especially the more vulnerable smaller colonies and mating nucs that were just part of our recent queen production.

We feed our bees aggressively, and protect them to the best of our ability against these harsh elements.  We feed pollen patties and other nutritional supplements; we expand the fire breaks around each apiary; we put out ant baits and yellow jacket baits to keep these aggressive pests (somewhat) under control; we make sure that every yard has continued access to reliable fresh water; and we sometimes place additional lids on top of our colonies for additional shade and heat protection.

In spite of all of these efforts, sometimes it is simply not enough.  When a colony of bees becomes overly stressed for any or all of the above reasons, it may get to the point where the bees themselves decide “enough is enough.”  They’ve had it, and they want out.   And so, they leave . . .

Sometimes in the fall we find that there is an uptick in “swarming.”  Our beekeepers find what appear to be giant swarms of bees hanging around the edge of our apiaries.  Other giant swarms seem to arrive out of nowhere.   These swarms are unusual, as that unlike spring swarms, they often seem reluctant to want to settle into hive bodies.  Of course, these fall swarms are not like the standard spring swarms; they are actually entire colonies of bees that are on the run.  And, of course they don’t want to go back into boxes.  They just escaped one, and the conditions were terrible!

In the beekeeping world, this is called absconding.  Absconding almost always takes place in the fall.  Sadly, these absconding bees have almost no chance of surviving the winter.  Like desperate refugees leaving a war zone with few options, they have scarce resources and limited realistic possibilities for survival.  The best they can hope for is that a conscientious beekeeper can rescue them, give them a new and safe home, feed and treat them well, and offer them a fighting chance to survive into the next season.

Personal Hygiene And Honeybees

At the risk of offending, it’s time to get honest.  As crazy as this may sound, as a beekeeper, you should consider your hygiene around your bees.  The bees themselves value hygiene and are very sensitive to odors.  That is why a conscientious beekeeper does the same.

If you approach your colonies with strong body odors, strong breath, or strong perfumes, you will often pay the price with angry bees.  Bees do not appreciate anything that makes you smell like a wild animal, or alternatively, excessively perfumed and unnatural.  Strong odors typically cause honeybees to behave more aggressively.  They make you more conspicuous and seem like more of a threat.  At times, here at Wildflower Meadows, we have noticed this pattern where a clean, hygienic employee can go a whole day without a single sting, while his or her partner with a messy bee suit and poor hygiene is harassed by the very same bees, all along while doing the same work and working right next to the clean employee!

This brings up an important point about bee suits.  They need to be washed and kept clean.  Especially if you were stung on a previous bee inspection, as your bee suit will retain the pheromone of the last sting or stings.  It is specifically that particular alarm pheromone that is the worst possible odor to have when approaching a bee colony.  It alerts the guard bees that you have already been stung at least once, and are therefore are likely a threat.  The venom odor, which you may not be able to smell, but that bees certainly can, is not a good way to win your bees’ favor with you!

Another point to consider is that leather watch bands can also be a problem around the bees.  Besides the fact that leather has the odor of an animal, a dark color can also aggravate bees, especially when it is moving rapidly back and forth in front of your bees’ eyes.  Honeybees don’t care about the time and don’t see a watch; what they do see is a piece of dark animal skin flashing in front of them.  What’s worse, is that if the watch band gets stung, then the pheromone will be embedded in the watch band, making it even more disturbing to the hive.

One of the golden rules of beekeeping is that when working with a hive, you want to approach the bees in a calm and respectful manner.  In many ways, when you are working with a colony of bees, you become their guest, or perhaps even an extension of their very collective – their connection to the human world.  You are their caretaker and become a part of the hive.  Considering that the bees place such a high importance on odors and pheromones – much more than we do – it is in your best interest that you show the bees this respect and do the same.  Your bees will be more likely to welcome you into their world with open wings!

The Push-In Queen Cage

Most beekeepers are familiar with the most commonly used standard queen honey bee cages, such as the three-hole wooden cage, the California Mini Cage, and the JZ-BZ plastic queen cage (the latter two of which are used here at Wildflower Meadows).  However, a less frequently used queen cage is called the push-in cage.  The difference between a push-in queen cage and a standard queen cage is that unlike a standard cage, a push-in cage allows the queen to begin to lay eggs while she is still in the cage, before she is released.  The more commonly used cages do not.

All of the more commonly used queen cages follow the same principle of confining the queen in a safe container while the bees in the colony become accustomed to her pheromone.  During this introduction period, the bees in the colony work their way through a candy tube of sugar, which delays the release of the queen by anywhere from one to three days, depending on the strength of the colony.

The riskiest part of this process, and the part of the process where the new queen can be lost, occurs just when the queen is released from hew cage.  At the point of release, although the queen may be generally accepted by the colony, she is still somewhat vulnerable because she has not yet laid any eggs.  Most honeybee colonies are generally suspicious of a new queen that is not laying any eggs, regardless of how excellent she may otherwise be.  (This is why best beekeeping practices advise not to disturb a colony during this sensitive period of queen introduction.  The combination of the disturbance added to the fact that a new queen might not yet be laying eggs, can cause a colony to turn on the new queen and possibly kill her.)

One of the ways around this problem is to utilize a push-in cage.  A push-in cage provides the new queen adequate protection during her introduction, while at the same time allowing her to start laying eggs in a safe, but restricted area of the colony.

To introduce a new queen using a push-in cage, the beekeeper must look for a section of comb that contains some open cells for the new queen to lay in, along with some emerging brood, and ideally, some nectar or honey.  The push-in cage is placed over this section, and the new queen is placed inside the cage, along with around three to six young attendant bees.  (The benefit of placing the push-in cage over emerging brood is that the new baby bees that hatch under the cage will provide additional support for the new queen.  And, of course, the baby bees will accept the new queen, since they know no other.)

Once the new queen begins laying eggs under the push-in cage – usually within one to three days – she is free to be released.  At this point, the colony has not only become accustomed to the queen’s pheromone, but the bees also recognize the queen as an actual laying queen who is already performing.  We like to say that the queen is “gold” at that point.

Although using a push-in queen cage takes a bit of effort, it is a very safe and reliable method of queen introduction.  It is why here at Wildflower Meadows, we always introduce our precious and champion breeder queens in this manner.  It is the tried and true safest way.

It’s easy to construct a push in cage of your own using standard hardware cloth.  Or, alternatively, many beekeeping supply companies, such as Mann Lake Ltd., sell ready-made push in queen cages.

A Queen’s Unique Scent

Those of us who live closely with others know that each individual person carries his or her own distinctive scent.  An attentive partner can often pick up their partner’s scent in their clothes, their bedding, or even in their living space.  If you are living closely with someone, you very quickly get to know that person’s unique scent.  It becomes a part of your world, and you grow comfortable with it.

The same is true for a colony of honeybees and their queen.  Most beekeepers are aware that all queens carry a special “queen pheromone” that distinguishes the scent of a queen bee from a worker bee.  It is obvious simply from watching basic honeybee behavior that the worker bees are quickly able to identify the queen bee, and it seems equally obvious that a pheromone is driving the behavior.  What is less well known, however, is that beyond this general queen pheromone, each individual queen has her own unique pheromone or scent, which is distinctly individual to her, and her alone.

When a swarm is presented with two queens at a distance, one of which is their own and the other an imposter, the swarm will always select its own queen and will attack the imposter.  It instantly recognizes the unique pheromone of its own queen even though both, obviously, smell like queens.  One smells like their queen and the other does not.

One might think that a queen’s unique pheromone signature might be driven by the fragrance of the blossoms that the colony is foraging in.  While this is somewhat true, it is only part of the picture.  For example, if a colony has been foraging on sage blossoms, the colony and the queen might begin to take on the aroma of sage.  This effect, however, is only an enhancement to the underlying scent, which remains unique and inherent in each individual queen.  Scientists have proven this by removing a colony’s queen, exposing her to a strong but different scent, and then reintroducing her to her colony.  The bees still recognized their queen’s underlying pheromone, even though it appeared to have been overwhelmed with a different scent.

What does this mean for a beekeeper?  A conscientious beekeeper must be aware that any new queen is always going to smell differently than a previous queen, and the bees will know this immediately.  Don’t be fooled, they are going to recognize this each and every time.  This is why we beekeepers use queen cages and sugar candy to slow a queen’s introduction, to allow time for the colony to grow accustomed to their new queen’s unique pheromone signature.  It is also why it is often good advice to not disturb a colony shortly after a queen introduction.  When a new queen is becoming established in a colony, the hive requires a certain amount of time to become intimate with that queen’s unique pheromone, and to claim that queen and her pheromone as their own.  Any disturbance that disrupts the transmission of this new pheromone can potentially create confusion inside the colony, possibly resulting in the colony mistakenly identifying the new queen as an imposter, and thus attacking her.

Pepper Trees And Bees

Anyone who lives in California, Florida or Hawaii is likely well familiar with pepper trees.  They seem to be found both far and wide, and probably for a good reason.  They are extremely hardy, drought resistant, heat resistant, and sprout up like weeds along highways and roads everywhere.  Sun or shade, these trees don’t care.  Poor soil?  No problem.  The pepper tree is perfectly at home in a world where record-breaking heat and adverse weather conditions seem to be the norm.

Officially called “schinus mole,” pepper trees originated in Peru, but like many other invasive plants, were brought to other parts of the world with good intentions.  The original Spanish settlers of the American west cultivated these trees because they appreciated the hard bark, which they used for making saddles.  Also, the pepper tree, true to its name, was a source of genuine culinary pepper spice for the early settlers.

The pepper comes from crushing the little pink berries that these trees produce, which are the direct result of bee pollination.  The dried pink berries taste like pepper, and are basically pink peppercorns.  Though, let’s be honest, the peppercorns that we are most familiar with are black.  Yet, the pepper tree’s pink peppercorns are still a culinary favorite today.

From a beekeeper’s perspective, pepper trees are a gold mine, as they seem to blossom practically non-stop, with several major blooming episodes per season.  And, most importantly, the bees love them!  The first blossoms start in the spring, with the latest occurring well into October, when practically nothing else is available for the bees.  The heaviest honey flow takes place in summer when the temperatures are high, usually in July.  As you can imagine, the honey has a somewhat spicy flavor and is rather dark.  As humans, we may easily overlook this rather ubiquitous and weedy-looking tree, but the bees see these trees completely differently.  They are a never-ending source of foraging excitement!

Combining Beehives

In today’s beekeeping environment of heavy bee colony losses, many beekeepers place a premium on having high colony counts to buffer against the inevitable losses.  But often lost in this way of thinking is the notion that having a lesser number of strong beehives is often better than having a higher number of relatively weak ones.

Strong colonies produce more honey, command higher rental revenues for pollination, are naturally better protected against robbing and pests, and usually have better chances of successfully overwintering than weak colonies.  Especially when it comes to honey production, one strong beehive will nearly always outproduce the combined effort of two weaker beehives.

This is why beekeepers often decide to combine two weak beehives into one.

When combining beehives, the most important consideration is which of the two queens that the beekeeper wants to keep.  It is rarely a good idea to keep both queens with the idea of “letting them fight it out.”  This can result in the surviving queen becoming injured, or – worse – losing both queens.  Ideally, one colony should be queenless, and the remaining queen should be the higher quality of the two.

Another consideration is to be wary of combining a sick or contaminated hive into a strong healthy hive.  It is better to attend to the sick hive separately rather than risk spreading a disease any further.

The tried and true method of combining colonies is what is commonly called “the newspaper method.”  This involves stacking one colony on top of the other with a sheet of newspaper separating the two boxes.  The idea is that the newspaper presents a barrier between the two colonies that slowly disappears over time as the bees chew away and remove the newspaper.  It is this shared removal of the newspaper that allows the two colonies to mingle together and get to know each other while they work together on the same project.  As the newspaper disappears, the pheromone of the queen slowly makes its way throughout the combined colony.  Before long, the bees lose track of which colony is which, and they all begin to share the pheromone of the queen.  They soon rally behind her, thus uniting the colony.

In today’s age of digital newspapers, newsprint is not as readily available as it once was.  Here at Wildflower Meadows, we have been known to substitute big sheets of blank newsprint paper, packing paper, art paper, etc.  It doesn’t matter, as long as the paper is non-toxic.  The bees will remove it soon enough!

Some beekeepers prefer to place a slit in the paper to help the bees gain an easier start to the process.  This may be helpful to the bees, but it is often not necessary.  Many beekeepers ignore the slit and still have equally successful results.

The Father Of American Practical Beekeeping

As Father’s Day approaches, we are inclined to stop and give credit to our fathers for all that they have provided before us.  As beekeepers, we too have “fathers” that came before us, and paved the way for our world today as 21st century beekeepers.  The most notable father figure in beekeeping is almost certainly, L.L. Langstroth, who, as the discoverer of both the principal of bee space and the Langstroth hive, is literally called “The Father of American Beekeeping.”

Less well known, however, but possibly even greater a legend in American beekeeping, is Moses Quinby, another beekeeping giant commonly referred to as “The Father of Practical American Beekeeping.”  It may sound like these two were in competition for ultimate legendary beekeeper status, but they were in fact contemporaries of each other, and as the story goes, were both good friends and colleagues.

Moses Quinby started his career as a woodworker, but became interested in beekeeping at a young age.  This was a good thing for the beekeeping industry, because here is what he accomplished in his beekeeping career, which spanned the 1800’s:

  • He invented the smoker
  • He pioneered the concept of supering
  • He invented the centrifuge honey extractor
  • He became America’s first commercial beekeeper, pioneering beekeeping as a profession
  • He built his hive numbers to 1,200 (before the invention of the automobile)
  • He was one of the first beekeepers to commercially raise queens
  • He was largely responsible for promoting Italian queen stock in the United States
  • He pioneered the earliest treatments for American Foul Brood

This was Moses Quinby’s beekeeping career.  Wow!

Of course, these accomplishments in and of themselves surely entitle Quinby to his legendary status.  But what really made Quinby a father, and “The Father of Practical Beekeeping”, was not only his stunning list of inventions and achievements, but his willingness to truly be a mentor to others and to share his knowledge and expertise so freely to all aspiring beekeepers.

Moses Quinby did not believe in patents or copyrights; he believed in sharing.  What he invented, he wanted to share freely with his fellow beekeepers.  He was not a selfish man, as none of his inventions were patented, nor his writings copyrighted.  Later in his life, in the 1870’s, Quinby communicated his, by then, substantial knowledge by writing articles for the American Bee Journal and other outdoor magazines.  He also wrote books, which he never copyrighted, just so that he could impart his extensive knowledge.  He would then also volunteer regular demonstrations to aspiring beekeepers, freely explaining principals and answering questions.  He thus became a father figure to all beekeepers, offering his free and expansive advice whenever and wherever needed.  Beekeepers looked up to him, and he did not hesitate to counsel them in return.

This is a worthy father, and worthy role model; one who more than lived up the high ideals that we seek in our paths as modern day beekeepers.  Happy Father’s Day!

The Hive Inspection – The Sniff Test

We have posted before about the importance of regular hive inspections.  Consistent and thorough hive inspections are what separate the quality beekeepers from the average ones.  Most of the features of an effective hive inspection are visual.  For example, the beekeeper is looking at brood patterns, honey stores, population size, etc.  Part of a thorough colony inspection, however, also involves the nose.

Beehives have telltale smells that can offer the beekeeper important clues as to the activities and wellbeing of a bee colony.  If you pay close attention to your beehive, you can typically pick up subtle changes in the aroma of the hive as they work different flower sources.  In our area of California, buckwheat and eucalyptus nectar have distinct smells.  This lets us know when these honey flows are in play.

Healthy brood also has a unique smell.  In the earliest part of the season, when hives are rapidly building up, most colonies contain a high percentage of brood compared to bees and honey stores.  When this happens, the brood smell is especially noticeable.  During almond pollination for example, which takes place in early February, a truckload of bees arriving from Southern California contains practically more brood than bees, and smells strongly of healthy brood, waiting to hatch out.

If the brood smell has an unpleasant or nasty aroma, then that is definitely cause for concern.  Foulbrood or other viruses may be infecting the brood.  A conscientious beekeeper needs to trust his, or her nose, and respond right away.