How Does a Bee Become a Queen Bee?

When we raise queens here at Wildflower Meadows, we start the process by grafting worker larvae from our breeder queens.  This procedure transfers the genetic material from our champion breeder queens to our cell building colonies, that will raise the queens which we sell year-round.

Did you happen to catch the words “worker larvae?” Isn’t it strange that the same larvae that were once destined to become worker bees, can be redirected into becoming queen bees? An individual fertilized larva contains the genetic material to become either a worker bee or a queen bee. What happens is that the bees themselves do a sort of genetic modification to the larva, depending on their desired outcome.

When we place these worker larvae into one of our powerful cell-building colonies, the colonies are already strong and queenless. They have a high motivation to develop queens. So, how does a beehive change the course of development of worker larvae to become queen larvae when all the larvae originates from the same source?

Scientists and beekeepers have been asking this question for ages. An obvious clue to the answer lies in the different diets of these two types of honeybees. Queen bee larvae are fed royal jelly, whereas worker bee larvae are fed worker jelly.  There seems to be no other variable to explain the change in development. Yet, how does diet trigger certain genes to be activated?

For many years, scientists and beekeepers have assumed that because a queen larva is fed royal jelly, the trigger to queen development must lie within the royal jelly itself. In fact, most scientists always assumed that there was some magical ingredient within royal jelly that initiates the genetic modification, triggering fertility, and queueing the development of ovaries, etc.

We now know that this is not entirely true.

While it is certainly diet that determines a larva’s development, scientists have discovered there’s no magical ingredient in royal jelly which triggers queen development. It’s actually the diet of the workers that is suppressing queen development!

Worker bee jelly, unlike royal jelly, contains pollen and honey. Pollen and honey, being directly derived from plants, contain plant materials known as phenolic acids, or flavonoids. These phenolic acids deactivate the genes responsible for developing ovaries and reproductive systems. In other words, these phenolic acids suppress queen development in workers.

Royal jelly, on the other hand, is entirely a secretion of bees.  It is a pure bee product that does not contain any plant product – it is completely, 100%, devoid of phenolic acids. The absence of phenolic acids allows a queen bee to fully activate her reproductive genes and completely develop her robust reproductive system.

How efficient is it that honeybees have developed such an amazing way of raising two very different types of bees from the same source? Think of how much more complicated a beehive would be if the bees required different genetic larvae for both workers and queens. By performing this genetic modification on the same source, honeybees have developed an elegant solution for raising queen bees on demand!

Superceding Queens vs. Breeding Queens

One of the easiest ways to produce a queen is to simply remove the original queen from the colony, and allow the colony to raise its own queen on an emergency basis.  Within a few hours of losing its queen, the pheromone levels inside the colony will change precipitously and the colony will soon realize that it is without a queen.

When a colony loses its queen, it begins raising supercedure queen cells.  To do this, it takes worker larvae of various ages and then selects a few cells to transform into queen cells.  The worker bees then begin feeding these selected worker larvae royal jelly instead of the usual worker jelly.  By reshaping the larvae cell downward, they have created an emergency queen cell, which will then eventually hatch into a virgin queen.

While this may seem like a relatively easy and straightforward method for a beekeeper to raise a queen – as the colony does all the work – this type of supercedure queen is unlikely to match the quality of a queen that is intentionally bred; either by the colony itself (as in the case of a swarm cell), by an individual beekeeper raising a few queens, or by a commercial queen breeder raising thousands of queens.

There are two reasons for this:  First, unlike a colony’s hasty procedure in raising supercedure queen cells, when a colony intentionally raises swarm cells to swarm, or when a queen producer intentionally raises queens for production, both have a high intent to create optimal conditions for the rearing of the queen cell.  This means that the larvae selected are young and of the perfect age, and the environmental conditions are ideal for raising a queen.  Thus, the colony is well stocked with plenty of the necessary raw ingredients, pollen and well-fed larvae, and the conditions are perfect for producing an ideal queen cell.  On the contrary, when a colony is forced to raise a supercedure cell under an emergency condition, these environmental conditions may or may not be in place.  The larvae selected may not be of the perfect age, the care of the queen cell may be less than ideal, and the queen cell and resulting queen may be below average.

Most importantly, however, is that a supercedure cell is a genetically unknown queen and may be sub-par genetically.  Unless the supercedure queen is from a known breeder, such as one that has been instrumentally inseminated from known stock, a supercedure queen is the daughter of a queen of mixed and unknown origin.  There could be undesirable and unknown genetics from the original queen that could be passed down and possibly amplified in the next generation.  This is why, as a rule, conscientious beekeepers are reluctant to breed or accept queens that are bred in this hasty manner.

Fertilized vs. Unfertilized Eggs – A Queen Bee’s Gender Reveal Party

Some of us enjoy celebrating “gender reveal parties” – because the truth is, no one really knows whether a human infant will be male or female until birth (or close to birth in the case of an ultrasound.) Before this technology, however, it was anyone’s guess whether a child would be born as a boy or a girl. During the early stages of pregnancy, the odds of a child developing as one or the other are random, and more or less equal to a coin toss.

Imagine, however, if we humans could determine the sex of our offspring – not when the child was born, nor earlier with an ultrasound scan, but rather at the time of conception! How different and crazy would our world be if there were such a scenario?

Believe it or not, this is the way honeybees determine the sex of their offspring. It’s actually the queen who dictates the sex of her offspring – literally at the time of egg-laying. When a queen lays an egg, she has her own method of laying either a fertilized or unfertilized egg.  As the egg passes through her oviduct, the queen can choose to fertilize the egg by releasing a tiny amount of her stored sperm from her spermatheca. This will fertilize the egg. Conversely, the queen can also choose to not fertilize the egg.

A fertilized egg will become a female honeybee – either a worker bee or a queen bee. An unfertilized egg will develop into a male honeybee – destined to be a drone. In a healthy colony with a healthy queen, most eggs are fertilized. This makes sense since the vast majority of honeybee colonies consist of worker bees, which are always female.

It is astonishing that a single insect, the queen, has this powerful ability to dictate the sex of her offspring right at the time of conception. It is equally astonishing that somehow, she can determine the right quantity of drones and the right seasonality for laying drones at any given time. All of this is within her power, and somehow, she knows exactly what to do.

How much of this decision-making lies within the queen herself versus within the colony is not entirely clear. Is the colony acting in the same way that a baseball catcher acts with a pitcher, calling the type of pitch to throw? Or is the pitcher herself calling the shots in this case? Scientists believe that both are happening, although the queen clearly dictates the final decision.

The colony itself has some influence in determining the number of drones by the way they choose to allocate the honeycomb when building. If the worker bees construct a large amount of drone-sized comb and point the queen towards it then the queen will lay more unfertilized eggs (drones). If the colony does not build any drone-sized honeycomb, then the queen will only lay worker brood. With no appropriately sized comb, what choice does the queen have after all? It is also possible for worker bees to use pheromone signals to help influence the overall frequency of drone laying.

The Five Eyes of the Honeybee

Did you know that bees have excellent eyesight?  This is because honeybees have five eyes!

This may be surprising, as we know that bees do not rely on any eyesight when they are inside the hive.  The inside of a typical beehive is completely dark. Since vision is impossible inside of a beehive, bees rely on their sense of smell to communicate, using natural chemicals called pheromones. They also navigate by using the feel of their antennae. Outside the hive, however, it’s a completely different story.

When bees are outside, they rely heavily on their sense of sight to find flowers, navigate, and survive – meaning their vision is very important. Luckily, bees have five eyes – including two large compound eyes and three simple eyes, also called ocelli. The compound eyes are located on either side of the bee’s head, while the ocelli are arranged in a triangular pattern on top of the bee’s head.

Compound eyes are what most people imagine when they think of insect eyes. They are made up of thousands of tiny lenses that all work together to make one single image for the bee – though we think they may see things more like a mosaic. Bees’ compound eyes help them see color, movement, and patterns, making their eyes most useful when it comes to visualizing and identifying flowers.

Honeybees need to be accurate at identifying colors to help them find the right flowers to pollinate.  Curiously, the way their compound eyes perceive color is much different than humans. For instance, bees can’t see red, they see more of the ultraviolet (UV) spectrum than humans. Their compound eyes help them see UV iridescence on flower petals, allowing them to easily identify flowers from one another.

The bees’ ocelli, on the other hand, are simpler eyes that only have one lens. They don’t allow bees to see an image but instead enable honeybees to detect the direction and intensity of sunlight. This helps bees follow the sun and navigate during flight. Clearly, bees don’t use maps or GPS technology to find their way back to the hive. Instead, they navigate by using the location of the sun to help them locate flowers, find their hive, and not get lost directionally. This means it’s imperative for bees to have excellent visual sensitivity to the sun, and can gain a fix on the sun’s location in the sky.

Drone honeybees and queen honeybees all have the same five-eye configuration. And while they navigate similarly to worker bees, they use their compound eyes for slightly different purposes. A drone bee’s role outside the hive relies on them looking for a small target – a queen bee to mate, versus flowers to pollinate. This is why their compound eyes are much bigger than that of the worker honeybee. Once drone honeybees arrive at a drone congregation area, they use these enormous compound eyes to help them find suitable virgin queens to mate with.

A queen bee’s eyes are not as big as a drones’ however. Queen honeybees also use their five eyes for navigation, mating, and finding their way home. Once a Wildflower Meadows queen returns home from her mating flight, she uses her compound eyes to find her mating nuc, where she begins her life inside the colony as an egg-laying machine.

Grading Bees For Almond Pollination

January in the United States should be a quiet time for beekeeping.  Most colonies are in winter survival mode, doing their very best to stay alive to make it to another season.

In California, however, beehives are anything but dormant.   They are busy taking in the full-service treatment of their beekeepers, with regular examinations and ongoing feeding regimens.  The reason?  Almond pollination is right around the corner.  By the first week of February, beekeepers will be moving beehives into the 1.3 million acres of almond groves in the Central Valley of California.  Given that most almond growers employ roughly two bee colonies per acre, it is a fair assumption that at least 2 million bee colonies are required to pollinate the annual almond crop.  That amounts to over 80% of the entire United States commercial beekeeping supply!

Because demand for pollination keeps rising while the supply of healthy bee colonies declines, almond growers, understandably, grow anxious each season around this time.  These growers repeatedly contact their beekeepers or brokers and demand to know how many healthy colonies that they can expect.  This in turn transfers the stress to commercial beekeepers.  The commercial beekeeper always faces a difficult decision in response to this question.  How many colonies should he commit to deliver to the grower?  If he commits too high of a number, he risks damaging his reputation, with the risk that he could be considered as someone who does not keep his word.  On the other hand, if he plays his hand too conservatively, offering a low number of colonies, he may risk leaving precious income on the table.

In order to answer this challenging question, commercial beekeepers begin to carefully grade their colonies as soon as the January weather permits.  The beekeeper needs to know right away not only how his colonies survived the winter, but also in many cases, how the colonies survived the often very lengthy and arduous trip across the United States into California.

Most almond growers demand healthy honeybee colonies that contain, on average, eight frames of bees.  That means that when a colony is opened, the inspector can clearly see that the bees not only are present on the frames, but that their population covers eight frames nearly completely.

There is a little bit of prediction involved in early grading.  Sometimes in early January a colony, especially one from the Southern portion of the state, may only show up with five or six frames of bees.  However, if this same colony is filled with brood, it is almost a certain bet that within a few weeks, the brood will hatch and the colony will expand into the requisite eight frames.  If a colony does not emerge at the beginning of January with at least five to six frames of bees present, however, there is usually little hope that it will be of sufficient strength to reach eight-frames by February.  In this case, the beekeeper must decide if he needs to combine these bees with another colony in order to salvage some income from the bees.  Or, alternatively, if the beekeeper has a large number of colonies that are well above eight frames, he can supplement the weaker colony by borrowing strength from the stronger ones.

(Please note that we use the gender “he” in this post for commercial beekeepers for simplicity.  However, there are also many female commercial beekeepers. )

Raising Your Own Queen Bees

Here at Wildflower Meadows, we take pride in being a reliable source for quality queen bees for our many loyal customers – both repeat and new. Raising queen bees is more than just our job; and we are pleased when our customers can enjoy the fruits of our hard work and expertise.

Believe it or not, we are also equally happy when a beekeeper takes it upon him or herself to learn the science and art of queen rearing.   At that point we share the joy of a beekeeper, who in learning how to raise queen bees, joins a select group of beekeepers who not only manage honeybees but are self-sufficient in meeting their own queen needs.  Queen rearing is advanced beekeeping.  There is a bit of a learning curve, but the benefits of knowing how to raise one’s own queens are huge.

The first and perhaps most valuable benefit is self-sufficiency.  Imagine the notion that you can have your own source of queen bees more or less whenever needed, on-demand.  This means no waiting during the peak season, no scheduling with your queen provider, and no placing orders months in advance. You’re the boss, and you raise your queens when you need them and when the timing is right for you and your hive.

Plus, you’ll likely save money – perhaps a lot of money.  The more queens that you raise, the lower your cost per queen becomes.  Sure, you need to purchase breeder queens and some basic supplies upfront, but once your system is in place, you can literally raise thousands of high-quality queen bees – or as many as you need.  After your initial outlay, the cost of producing every incremental queen is minimal, besides some basic ongoing supplies. The more queens you produce, the more money you save.

If you start with a Wildflower Meadows instrumentally inseminated breeder queen, your stock will carry the optimum Wildflower Meadows genetics that we are known for.  The difference is now you’re in control of both the timing and scale of your queen production.

Raising queens gives you the direct, satisfying experience of witnessing the joy and magic of a queen’s transformation first-hand: from larva to pupa, to virgin queen, and finally to a quality mated queen that you can truly call your own.

Overwintering Honeybees In A Single Deep Super

In the height of winter, beehives shut down to varying degrees.  In Southern California, however, many of our beehives remain active, though to a much lesser extent than during the spring or summer months.  During winter, the bees wait for the relatively mild weather, which reliably comes along from time to time.  When a pleasant day does arrive, the bees can be found out on the go, foraging on the many winter blossoms such as jade and eucalyptus.

Most North American beekeepers overwinter their colonies in a “double deep” configuration, meaning that the colony heads into winter with two deep supers.  The colder and longer the winter, the more stores of honey are needed for the colony to ensure survival.  In the northern parts of the United States, most beekeepers like to have the top box solidly filled with honey to minimize the risk of starvation.  This top box, heavy with honey, also provides a layer of insulation from the cold.

Here in Southern California, however, the wintering conditions are much milder.  Because our bees have the year-round opportunity to forage, and we have the availability to feed our bees, if necessary, during winter, we often prefer to overwinter our colonies in a “single deep” configuration – compressing the bees into one deep super.  California bees seem to overwinter well in a single hive body.  This tight configuration minimizes empty air space and condensation, allowing the bees to control their brood temperatures when stormy weather and cooler nights prevail.  In a single box, they keep their cluster tight, and have plenty of population packed around the winter brood nest.  This tight space also keeps the bees relatively compressed around the entrance, affording them better protection against robber bees and other pests.

As humans, we might find such crowded conditions completely unacceptable.  As insects, however, honeybees generally have no problem with these slightly crowded conditions – especially in winter.  When the weather is cold, bees actually seem to enjoy the company of their sisters and thrive in their tight living spaces!

Honeybees And Bears

Of all the natural predators of honeybees, such as birds, skunks, raccoons, and badgers, probably none are as fearsome and notorious to bees and beekeepers alike, as bears.  Bears love to eat bee larva, bee brood, and to a lesser extent, honey.  With this appetite for bee products, they seem to be more interested in beehives than even the most dedicated beekeeper!  It is no coincidence that many honey containers are shaped like bears.  Keep in mind that even Winnie the Pooh loves “hunny.”

The problem, for both the bees and their beekeepers, is that when bears visit an apiary, the damage they cause is almost always devastating.  Bears do not carefully harvest honey like we beekeepers do.  No, they pick up entire colonies and strew them about the ground; destroying the equipment and creating havoc in the apiary.  If you have ever visited an apiary after a bear visit, your first impression will be is that it looks like a war zone, with no survivors.  Damaged and destroyed equipment will be strewn everywhere.

You would think that a colony’s guard bees would be able to scare a bear away with their stings, but the bears’ fur coats are so thick that the bees’ stingers can not really penetrate well enough to get to a bear’s skin.  The only vulnerable spot on a bear is its face.  This is perhaps why bees have evolved over the years to focus on stinging the head and face of an intruder.  Most beekeepers know that angry bees typically aim for the head.  This is likely an evolutionary and instinctive response against bear attacks.  It is also why the beekeeping veil is the most important piece of personal protection for a beekeeper.

The best and probably only practical defense against bears is to encircle vulnerable apiaries with electric fencing.  As a beekeeper, this is an expensive solution, however, much less expensive than losing an entire apiary of bees and equipment with every bear attack.  Fortunately, most beekeeping supply companies sell these fences, many of which are solar powered.

If only bears could realize how dependent they are on honeybees, just like the rest of us, they might show a little more compassion to the colonies that they attack.  It is estimated that about 15 percent of a bear’s diet consists of berries, all of which require pollination, much of which is done by honeybees.  Many researchers suspect that bears are already being adversely affected by the decline in wild bee populations.  Fewer pollinators mean fewer berries, which in turn affects the bears’ nutrition and foraging behavior.

Pollen: The Bees’ Thanksgiving Day Meal

As we approach Thanksgiving in the United States, many of us look forward to not only time off from work and time spent with family, but to the meal itself.  A proper Thanksgiving meal is an abundant feast.  Let’s face it: no one ever leaves a Thanksgiving table feeling hungry.

It’s a shame that our bees cannot celebrate with us.  During Thanksgiving, most bees throughout the United States have basically little food.  The temperatures are cold; the days are short, and practically no flowers are blossoming.  With so few flowers in bloom, there is little or no pollen available for the bees.

Bees thrive on pollen.  Of all the foods that bees consume, nothing matches the nutritious benefit of real, actual pollen.  Pollen is the bees’ true Thanksgiving meal.  It is pollen that drives bee colonies to expand their population, raise drones and generally get healthy in the spring.  Over the years, we’ve heard many of our larger commercial customers say that “pollen solves everything.”  It’s true.  When flowers are blooming and pollen is abundant, bees grow well-nourished and healthy.

This is why bees can easily double their populations in just a few weeks of almond pollination, but rarely grow in similar size during months of alfalfa pollination.  Why?  Almond blossoms are loaded with nutritious pollen; whereas alfalfa blossoms are not.

For years, beekeepers have been trying to come up with various pollen substitutes to mimic the beneficial effects of natural pollen.  While the quality of these pollen substitutes continues to improve over time, all of them still fall short when compared to the effects of actual, real pollen.  Imagine trying to substitute a full Thanksgiving Day meal with a few protein bars, and you get the idea.  While we can try to substitute various natural foods with our own creations, in the end little can compare with a full, hearty and genuine Thanksgiving meal.   And, it is the same for the bees.  Happy Thanksgiving!

Breeder Queens vs. Mated Queens: What’s the Difference?

Beekeepers looking to purchase a queen bee sometimes ask us – what makes a breeder queen unique, and why does a breeder queen often cost nearly ten times the amount of a regular mated queen?

A breeder queen is the cornerstone of a successful bee breeding program. While a breeder queen could certainly take part in regular honey production and beekeeping activities, such as pollination – and most likely would be a superstar in such endeavors – this is not the breeder queen’s purpose. A breeder queen is the carrier of the finest, specially selected genetics, almost always instrumentally inseminated – she is a prized specimen, too precious for ordinary beekeeping.

The vast majority of queen honeybees sold by most queen producers (including Wildflower Meadows) are commonly known as mated queen bees, sometimes also called laying queen bees.  These queen honeybees have been naturally open mated.  While these mated queens are generally of high quality themselves, they are not instrumentally inseminated, and therefore always contain a percentage of unknown genetics.

Unknown genetics may present risks within a breeding program.  An open mated queen will mate with approximately 15 drone honeybees, all of which may potentially be from unknown origins.  If a regular open mated queen is used for breeding, she is guaranteed to pass along hybrid and unknown genetics to her daughter queens, creating variability in her offspring.  With up to 15 unknown drones (fathers) in her genetic profile, there is no guarantee of uniformity and optimum genetics in her offspring.  The open mated queen’s daughters will almost certainly be hybrids and may be inconsistent in performance and quality, which is not ideal for breeding.

A breeder queen has been specifically bred, selected, and inseminated for genetic excellence – which is why breeder queens are more valuable for breeding.  The advantage of a breeder queen versus an open-mated queen is that a breeder features pre-selected F1 maternal AND F1 paternal lines that are 100% known and carefully identified. There are no unknowns with instrumental insemination – everything has been optimized for quality and uniformity.

Optimal genetics are vital to the growth of strong colonies. A beekeeper who wants to breed should start with carefully selected, pure genetic lines that are of known origin on both the maternal and paternal sides. This is the advantage of instrumental insemination and is what makes the breeder queen so unique and prized among honeybee breeders.