Which Direction Should Beehives Face For Best Pollination?

Many experienced beekeepers suggest that the entrance of a beehive ideally should face towards the south or to the east.  The southern exposure makes sense.  During the winter months – at least in the northern hemisphere – the sun sits low on the southern horizon.  The direct rays of sunshine on the entrance during the late fall and early spring enable a beehive to potentially gain some sunlight and extra flying hours.  An eastern exposure is also valuable because when facing east, the bees tend to get an earlier start on foraging throughout the season regardless of the angle of the sun.

Most of the time, however, it doesn’t matter all that much.  Many backyard and urban beekeepers are limited in their options on how and where to place their bees.  The truth is, bees are flexible, and most of the time they adjust well to the environment they are in.  When it comes to almond pollination – which is about to take place this month – almond orchard owners take no chances on the placement of the beehives that pollinate their groves.  Each year, a staggering 1.6 million colonies are rented for almond pollination.  Almond growers pay a small fortune to rent these bees, and they usually have specific requests on how they would like them placed.

One of the issues affecting bee pollination of almonds is weather.  Almonds are pollinated in February, a typical month of adverse weather not only in California, but most everywhere in the United States.  Honeybees do not fly until daytime temperatures exceeds 55º F.  Obviously, a grower cannot control the weather, but he or she can control the way that the rented colonies are placed in the grove so that the bees obtain as much sunshine as possible.  Growers typically request that beehives should face the sun, and the boxes should not be shaded by the trees or by other beehives.

To give an almond grower good value, the beekeeper should strive to place most beehive entrances facing due east or southeast, so that the bees catch the early morning sun and get off to an early start.  Also, a certain percentage of the colonies should face west.  The west-facing colonies will often fly right up to the evening hours, usually after the east-facing colonies have shut down.  Plus, on a day where rainy weather clears up later in the afternoon, the west-facing bees might still have time to venture out, while the east-facing colonies remain shut down.

El Niño

After four years of drought and a general lack of rain, things are finally getting wet around Wildflower Meadows!

The first week of 2016 alone brought over three inches of rain to our queen rearing apiaries, giving the parched ground a nice soaking.  The spring rains of El Niño, assuming they continue, should provide a noticeable difference to the bees’ well-being later in the season.

Early season rains offer a welcome boost to the plants and crops that the bees rely on later for food.  In past drought years, even though honey-producing plants bloomed as usual, the flowers were often dry.  Our bees would visit their favorite flowers and would come home empty.  The plants, stressed by drought, were holding back the little water they had, and not giving up any surplus moisture to their flowers and the bees.

As a result, most California beekeepers, including Wildflower Meadows, were forced to feed their bees much more than normal over the past several years to make up for this ongoing deficit.  Hopefully, with higher ground saturation in 2016, the plants will have more moisture to spare.  Once the plants begin to flower, honey production should improve, and nectar should be more plentiful.

In the near term, however, the heavier rains mean less foraging time for the bees.  Bees are not at all interested in flying in the rain.  The steady rains and blustery weather force all but the bravest bees to stay inside their hives until the weather clears.  With less foraging time, bee colonies often need additional feeding while the rains keep them confined in their hives.

It’s too bad that we beekeepers can’t stay inside during the rain too!  For better or worse, our beekeepers have to head out and brave the rain to feed bees, move hives, gear up for queen rearing and so on.  So far, we haven’t gotten any of our trucks stuck in the mud, but it’s probably only a matter of time . . .

Beeswax

Pictured above is some genuine Wildflower Meadows’ beeswax that we recently cleaned and filtered.

Bees produce beeswax from several glands in their abdomens, which they use to build their honeycomb.   Usually beeswax production is at its highest when honey is flowing in.  It takes an extraordinary amount of honey to produce an equivalent amount of beeswax; most estimates are that up to twenty pounds of honey are required to generate a pound of new wax.  At times of the year when honey is not flowing strongly, the bees prefer to recycle existing wax, moving it around for comb repairs and other needs, rather than generate new wax.

At Wildflower Meadows, our bees do not produce much surplus beeswax.  As a company dedicated to queen rearing, our bees are not necessarily optimized for either honey or beeswax production.  Rather, we have many small mating nucs, which are designed to raise queens rather than collect surplus honey.  Occasionally, however, especially during strong honey flows, our colonies can get clogged up with beeswax.  The bees get so excited about the incoming nectar and honey that they start building wax everywhere!  We often have to clear wax out of the area in and around the feeders so that the feeders do not get clogged and unusable for later in the season, when the bees will need to be fed.

If we collect enough beeswax – a little at a time – we sometimes can end up with a tray or two in a season.  When the surplus wax is cleaned and filtered, it is a joy to behold.  The beeswax is soft and fragrant, naturally golden like the flowers it was sourced from.  Beeswax has been used for millennia, primarily for candle making and cosmetics.  Most beekeepers will agree: there are few things quite as satisfying as slow-burning, fragrant beeswax candles made from your own beeswax!

Flowers In December

In the Northern Hemisphere, not too many plants offer honeybees blossoming flowers during December.  One exception is the jade plant, also knows as Crassula Ovata.  In most parts of the country, jade is a houseplant, but here in California, jade grows outside, primarily in outdoor household gardens.  Jade, a native of South Africa, is a succulent plant that thrives in subtropical climates and doesn’t require much water.  Therefore, it is especially popular with water-thrifty homeowners in California.

To produce blossoms, jade takes its cues from the weather.  It needs long nights, cool and dry days.  December in California fits the bill perfectly.  Usually around the first week in December, buds appear, shortly thereafter followed by somewhat sticky, pink and white, star-shaped flowers.

The bees in our queen bee yard are usually rather dormant in December, taking a well-needed vacation from the hard work of raising queens over much of the year.  Nevertheless, the blooming jade plants perk them up a little.  Where else can a vacationing honeybee get a nice serving of fresh nectar in the middle of December?

Wildflower Meadows would like to thank all our customers and friends for a successful 2015.  We wish each and everyone of you a joyous and happy holiday season.  Our best wishes to you all for 2016!

The Composure Of A Well-Mated Queen Bee

Near the end of this season we managed to capture a close up photo of a rather calm looking queen as she paid a visit to the “tattoo parlor” for her blue mark.  There is something peaceful about the mannerisms of a well-mated queen bee.  She exudes a sense of composure, which can practically be seen in the above photo.

This sense of calm is also noticeable inside the hive as a well-mated queen bee moves purposefully and calmly across the combs, laying her eggs in a meticulous circular pattern.  The other worker bees carefully surround her, gently touching her with their antennae to connect with her queen pheromone.

In handling a queen bee, as long as she is treated with care and respect, the queen typically will take her handling in stride, hardly putting up a fuss as she is given her color mark or placed inside a temporary cage for transport.  At times when we gently grasp a mated queen bee by her thorax or wings for marking (here by her legs), it feels like she is holding hands with us!

In handling countless tens of thousands of queens, to the best of our knowledge, no queen bee has ever attempted to sting any of us at Wildflower Meadows.  Although queen bees have a stinger, and theoretically can sting humans, they almost never do.  Instead, they reserve their sting – which is as potent as any other worker bee – for their traditional enemies: other queen bees.

Next Year’s Champions

During the height of the beekeeping season, while we are busy raising queens and shipping orders, another project takes place in the background.  Our breeding experts are assessing an assortment of bee stock obtained from around the country for the best of the best – the most mite resistant, the most gentle, the most hardy of all.  They then cross their best candidates with other desirable stock, typically pure VSH drones obtained from the USDA.  If all goes well, the results are outstanding breeder queens for the upcoming season – next year’s champions.

Around the end of each season, we look forward to receiving a new group of these hand-selected breeders to add to our existing proven stock.  This assures us a ready selection of quality queens from which to breed at the start of the next season.

We recently received our final set of this season’s breeder queens.  Number 63, pictured above inside a push-in cage, arrived with high accolades.  Her offspring is light and gentle, and contains both the Pol-Line and VSH traits.  She is precious, and we are taking all precautions for her well-being!

To introduce her into a new colony we used a homemade push-in cage.  This type of cage allows the queen to begin laying eggs in a safe and controlled area before the cage is removed and she is fully released into her new colony.  By laying eggs before she is released, she becomes more desirable and better accepted by her new colony, greatly increasing the odds of her successful introduction.

Screened Bottom Board

The Screened Bottom Board

When varroa mites first came on the scene in the United States during the late 1990’s, screened bottom boards followed shortly thereafter.  The concept of screened bottom boards appears to be sound:  varroa mites often fall off of bees to the bottom of the hive.  If the mites are regularly falling off the bees, then why not use a screened bottom so that the varroa mites continue their fall right out the bottom of the beehive?  Mathematically, any reduction in the growth of varroa is bound to help the colony of honeybees.

The main problem with the screened bottom board, is that over many years, no one has ever definitively proven that it works.  One question that remains to be answered satisfactorily, is that if the beehive is placed on the ground then what is to prevent the mites from simply crawling back up into the colony?

Nevertheless, at Wildflower Meadows we committed to using screened bottom boards a number of years ago, and currently run the majority of our colonies over screened bottoms.  In any case, screened bottom boards provide excellent added ventilation.  The screened bottoms also allow the debris from the beehive to fall away from the bees creating a hygienic environment, much in the same way that a feral beehive generally has no bottom.

The Final Fall Queens

At some point in early autumn, usually around mid-September, give or take, mating conditions begin their decline.  The bees sense the oncoming change of season, and bee colonies begin subtle changes in preparation of the upcoming winter ahead.  Our queen cell building colonies, which earlier in the season were queen-producing machines, grow less enthusiastic about raising new queen cells with each passing day.  They know it, and we know it too: the season is nearing its end.

Colonies have begun to cut back on brood rearing and are especially reluctant to produce new drones.  Autumn is not a season of swarming and expansion, so the bees feel little need to raise new drones.  Without swarms and virgin queens flying about, drones serve little purpose in the honeybee world.  We begin to see less and less of them.

Autumn is when we harvest the very last queens of the year.  Our last batch of queen bees, pictured above, was mated about a month earlier when conditions were better.  These are the true fall queens, the final mated queen bees of the year.

The last batch of queens also marks the end of the queen-rearing season for Wildflower Meadows.  The mating nucs are shut down, our employees take some well-earned time off, and the bees begin their long journey into the winter season

Multiple Mating Flights, Multiple Mates

Until the middle of the 20th Century, scientists believed that queen bees took only one mating flight in their lifetime.  It wasn’t until the 1940’s that a scientist who was studying queen bee mating behavior discovered that queen bees take multiple mating flights.  The scientist (Roberts, 1944) determined that the number of mating flights ranged from one to five.  It took another ten years or so for another scientist (Woke, 1955) to postulate and prove that queen bees not only take multiple mating flights, but also mate with multiple drones during this flights.

We now know that queen bees mate with approximately 10 to 20 drones, typically over the course of several flights.  Why so many flights and drones?  By spreading the mating process both over time and over multiple drones, the queen limits the probability that she will mate with a drone that shares the same sex alleles.  This varied mating program minimizes the chances of inbreeding and maximizes the chances for “hybrid vigor.”

From Egg To Honeybee – An Amazing 21 Days

It boggles the mind to think that in a mere 21 days, an egg can become a tiny larva, then a pupa, and then a worker honeybee.

From Egg to Worker Honey Bee:

  • Day 0:  The worker bees clean out a cell of honeycomb and the queen bee lays a fertilized egg in it.
  • Days 1 to 3:  The egg sits in a honeycomb cell kept warm (approximately 93º Fahrenheit) amidst the brood nest.  It will lose approximately 30% of its weight during this incubation period.
  • Day 4:  The egg hatches into a larva.
  • Days 4 to 9:  The nurse bees feed the larva worker jelly (produced by the glands of nurse bees), and later pollen and honey, continuing to keep the larva warm and moist.  The larva eats between 150 to 800 times per day, growing at an astonishing speed.
  • Day 9:  The larva now weighs approximately 900 times the weight of the original egg!
  • Day 9:  The worker bees seal the larva.  The larva is now about to become a pre-pupa.
  • Days 10-21:  The pre-pupa goes through tremendous changes over these 12 days, becoming a pupa, and gradually taking the shape of a bee.  The skin of the pupa darkens near the end of this process and on the final day . . .
  • Day 21:  A bee emerges.  We think of this as a day old bee, but it really is a 21 day-old insect.